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Abstract

According to recent studies, commonly used computer vision datasets contain
about 4% of label errors. For example, the COCO dataset is known for its high
level of noise in data labels, which limits its use for training robust neural deep
architectures in a real-world scenario.
To model such a noise, in this paper we have proposed the homoscedastic aleatoric
uncertainty estimation, and present a series of novel loss functions to address the
problem of image object detection at scale.
Specifically, the proposed functions are based on Bayesian inference and we have
incorporated them into the common community-adopted object detection deep
learning architecture RetinaNet.
We have also shown that modeling of homoscedastic aleatoric uncertainty using
our novel functions allows to increase the model interpretability and to improve
the object detection performance being evaluated on the COCO dataset.

1 Introduction

Usually, training a predictive algorithm involves training a machine learning model on a labeled
dataset from a scratch or using this dataset to fine-tune a model previously pre-trained on a large
publicly available dataset such as ImageNet or MS COCO. However, a recent study [3] concluded
that commonly used open datasets for computer vision tasks contain about 4% of errors in image
labels. The MS COCO dataset for detection models benchmarking is also known for its noisy labels
of both object classes and bounding boxes [15, 30]. At the same time, popular cross-entropy loss
is considered to be sensitive to noisy labeling [7]. Moreover, the deeper the model, the more it
adapts to these labeling errors. This negatively affects not only the integrity of the contests on the
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corresponding datasets, but also a real-world scale, since these datasets are often used for model
pre-training to solve various problems.

One way to account for the label errors is to estimate the aleatoric uncertainty, which reflects the noise
level in the training data and can be used at the inference time [12]. The aleatoric uncertainty is divided
into homoscedastic, i.e. constant for the data distribution in a particular task, and heteroscedastic,
i.e. different for each data object [13]. Despite the estimation of heteroscedastic uncertainty is
more useful for computer vision problems in general [13], its modeling requires changes in the
neural network (NN) architecture. Moreover, its application in practice requires developing tools to
postprocess prediction for a particular object with this uncertainty.

At the same time, the modeling of homoscedastic aleatoric uncertainty can be performed based on
the modification of the loss functions rather than the architecture, which is less time-consuming. In
addition, homoscedastic aleatoric modeling even improves the accuracy of solving the computer
vision problems [14]. Researchers Kendall et al. [14] consider the application of modeling this type
of uncertainty for multi-task NN architecture, solving semantic, instance segmentation, and depth
regression problems. Quantification of aleatoric uncertainty can greatly increase model performance
in the detection problem [6, 22].

Recently, Bayesian deep learning has been widely used in object detection [2, 9, 17, 23–25, 27].
However, all these works focus on epistemic uncertainty.

Fewer number of papers are devoted to the aleatoric uncertainty estimation [17, 18] including those on
3d object detection [5, 6, 22] and one-stage detector [17, 18]. However, existing works do not study
the application of homoscedastic aleatoric uncertainty modeling for the detection problem, although
this can help isolate noise from data and improve model robustness. Moreover, as the detection is the
multi-task problem (i.e. includes localization and classification tasks), the modeling can be performed
without changes in the neural network architecture, using tools, developed by Kendall et al. [14].

Being inspired by this, we aimed to answer the following research questions:

RQ1: Can homoscedastic aleatoric uncertainty modeling improve the detection accuracy based on
deep neural networks?

RQ2: Can Bayesian approximation be effectively applied to modeling homoscedastic aleatoric
uncertainty for existing detection models?

In order to answer them, we propose novel loss functions, whose optimization is equivalent to
modeling homoscedastic aleatoric uncertainty for the joint localization and classification tasks. The
paper contributions are the following:

1. A new loss function for the classification task for modeling the aleatoric uncertainty called
Bayesian Focal Loss.

2. A new loss function for the localization task for modeling the aleatoric uncertainty called
Bayesian Smooth L1 Loss.

The proposed loss functions for modeling the homoscedastic aleatoric uncertainty can be applied to
any NN detectors, which use cross-entropy or Focal loss and L1 or Smooth L1 loss, without changing
their architecture and training pipeline. The uncertainty modeling can make existing detectors robust
to noise in data labels and can improve detection accuracy as well.

2 Related Work

2.1 Bayesian Deep Learning for computer vision

Recently, Kendall et al. [14] suggested a tool for modeling homoscedastic aleatoric uncertainty
to weigh multi-task losses. They considered three computer vision tasks: semantic segmentation,
instance segmentation, and depth regression. The modeling required building a probabilistic model
for both classification and regression tasks.

For the regression task, they defined a probabilistic model with a Gaussian likelihood, where the
mean is given by the model output fW (x) with weights W on input x:

p
(
y|fW (x)

)
= N(fW (x), σ2) (1)
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and the variance is given as an observation noise scalar σ, which captures homoscedastic aleatoric
uncertainty.

Interpreting this Gaussian log likelihood maximization as objective, they obtained the modification
of L2 loss:

BL2 = − 1

2σ2

∥∥y − fW (x)
∥∥2 − log σ, (2)

with BL2 being the Bayesian L2 loss. It is then maximized with respect to weights W and noise
scalar σ.

For the classification task, the likelihood appeared to be less trivial. Assume the model output fW (x)
is scaled by 1/σ2 and then squashed through the Softmax activation function. Then, the likelihood is
the following:

p
(
y|fW (x), σ

)
= Softmax

(
1

σ2
fW (x)

)
, (3)

which can be interpreted as the Boltzmann distribution with temperature σ.

The log likelihood is defined as:

log p
(
y = c|fW (x), σ

)
=

1

σ2
fWc (x)−

− log
∑
c′

exp

(
1

σ2
fWc′ (x)

)
,

(4)

with fWc (x) the element of fW (x) vector for a particular class c.

Using maximum likelihood inference for the multi-task neural network with output y1 for the
regression task and y2 for the classification task the following minimization objective can be obtained:

L(W,σ1, σ2) =
1

2σ2
1

L1(W ) + log σ1+

+
1

σ2
2

L2(W ) + log σ2,

(5)

where L1(W ) = ‖y1 − fW (x)‖2 is the Euclidean loss for y1 and L2(W ) =
− log

(
Softmax(y2, f

W (x)
)

is the cross-entropy loss for y2. This loss is optimised with respect to
W as well as σ1 and σ2.

The main difficulty with theL2(W ) loss is to release x in fW (x) from scaling factor 1/σ2. To achieve

this, Kendall et al. [14] performed the following: subtracted and added
1

σ2
log
(∑

c′ exp (f
W
c′ (x))

)
to Eq. 4, then used a simplifying assumption[∑

c′

exp
(
fWc′ (x)

)] 1
σ2

≈ 1

σ

∑
c′

exp

(
1

σ2
fWc′ (x)

)
,

which becomes an equality when σ → 1.

2.2 RetinaNet detector

RetinaNet [21] is a one-stage anchor-based neural network for object detection. This architecture is
most famous by the proposed classification loss function, referred as Focal Loss. RetinaNet consists
of four subnetworks:

• Backbone is a basic convolutional network that extracts features from the input image.
Traditionally, the state-of-the-art networks are used as backbones, such as ResNet [10],
VGG [28], EfficientNet [29].

• Feature Pyramid Network (FPN) is a “neck” convolutional neural network proposed by Lin
et al. [20]. It combines feature maps from different layers of the backbone network in a
top-down pathway using lateral connection. This allows to solve a task (classification or
regression) at different image resolutions and semantic scales.
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• Localization subnetwork is a “head” subnetwork that extracts information from the FPN
about the coordinates of objects in the image, solving the regression task. It trains based on
the Smooth L1 loss proposed by Girshick [8].

• Classification subnetwork is a “head” subnetwork that extracts information about object
classes from the FPN, solving the classification task. It trains based on the Focal loss.

For the bounding boxes regression, RetinaNet uses Smooth L1 loss. This is a combination of L1 and
L2 loss functions, which was initially inspired by Huber [11]. Its formula is

SmoothL1(x) =


β2

2
· ε2, if ε <

1

β2
,

ε− 1

2β2
, otherwise

(6)

with 1/β2 the threshold for switching from the L1 to the L2 loss function, and ε = ‖y−fW (x)‖ with
x the network input, its output fW (x), and y the ground truth coordinate of the object bounding box.
The main difference from the L2 loss function is that addition of L1 case helps avoid over-penalizing
outliers.

For the classification, Lin et al. [21] introduced Focal loss. Focal loss is proven to penalize the
network better than the cross-entropy loss [21] on hard negative examples. Its formula is

FL(pt) = − log pt · (1− pt)γ , (7)

where pt =
{
p y = 1,

1− p otherwise

with p = Sigmoid(fW (x)), y the ground truth class label of an object. The main difference of
Focal loss from the cross-entropy loss is the modulating factor γ ∈ (0,+∞) introduced to handle
the problem of class imbalance, which is typical for object detection, since an object of interest
usually occupies relatively little space in the image. Thus, Focal loss results in higher gradient
values for higher error values and vice versa. This forces the network to focus on hard negative
examples better, which are the objects of interest. The generalized RetinaNet loss function can
then be written as L = αLclass + Lreg, with Lclass the classification Focal loss function, Lreg the
regression (localization) Smooth L1 loss function, α the balancing coefficient that adjusts the impact
of the Lclass term.

Although RetinaNet loss functions are quite effective, they do not allow to capture homoscedastic
aleatoric uncertainty making RetinaNet sensitive to the noisy data. To overcome this issue, we
propose the novel Focal and Smooth L1 loss functions, which are able to model homoscedastic
aleatoric uncertainty. We call our neural network, that utilizes them, Bayesian RetinaNet.

3 Bayesian RetinaNet

In this section, we introduce the novel loss functions with homoscedastic uncertainty based on
maximum likelihood estimation.

Let fW (x) denote the output of a neural network with weights W on input x and ε be the error that
is the norm of difference between the ground truth value and our prediction:

ε = ‖y − fW (x)‖.

3.1 Bayesian Smooth L1 Loss for Homoscedastic Aleatoric Uncertainty

First, we introduce the novel likelihood for the localization task, which is to predict object coordinates.
As localization is the regression task, we adopt the likelihood from Section 2.1 for the Smooth L1

loss and define our likelihood as the combination of Gaussian and Laplace likelihoods:

p
(
y|fW (x), σ, α

)
=

pG
(
y|fW (x), σ

)
, if ε <

1

β2

pL
(
y|fW (x), α

)
, otherwise

, (8)
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where pG is Gaussian likelihood, pL is Laplace likelihood with observation noise scalars σ and α,
respectively.

As in maximum likelihood inference, here we maximise the log likelihood of the model. Thus,
following the likelihood for regression in the case of L2 loss [14], for Smooth L1 it can be written as

log p
(
y|fW (x), σ, α

)
∝

−
ε2

2σ2
− log σ, if ε <

1

β2

−αε+ logα otherwise
, (9)

where L2 corresponds to Gaussian likelihood pG, L1 to Laplace likelihood pL.

This leads to the following minimization objective L(W,σ, α):

L(W,σ, α) = − log p
(
y|fW (x), σ

)
∝

∝


ε2

2σ2
+ log σ, if ε <

1

β2
,

αε− logα otherwise

=


1

2σ2
L2(W ) + log σ, if ε <

1

β2
,

αL1(W )− logα otherwise,

(10)

where we write L1(W ) = ε for the L1 loss of y, write L2(W ) = ε2 for Euclidean loss of y.

The likelihood in Eq. 10 has two variances corresponding to L1 and L2. However, this is inconvenient
in practice because the ground truth bounding box coordinates are unknown in the real world model
inference. Thus, to find the dependency between α and σ and also save the property of the likelihood,
we solve the equation of density function of our likelihood:

∞∫
−∞

p(y|fW (x), σ)dt = 1. (11)

From this equation, we obtain the following dependency between variances:

α = −β2 log τ, (12)

where τ = 1− erf
(

1

β2
√
2σ2

)
with erf the Gauss error function [1].

Whether we place Eq. 12 into Eq. 10, we obtain Bayesian Smooth L1 Loss:

BSmoothL1(ε) =

=


ε2

2σ2
+ log σ if ε <

1

β2
,

−β2ε log τ − log
(
−β2 log τ

)
otherwise

(13)

The first and second cases of Eq. 13 are not equal, when ε equals to 1/β2. The second case requires a
small correction. To solve this issue, we smooth this function and obtain the following loss function:

BSmoothL1(ε) =

=


ε2

2σ2
+ log σ if ε <

1

β2

−β2ε log τ + log τ +
1

2σ2β4
+ log σ otherwise

.
(14)

Following Kendall et al. [14] in experiments we train the network to predict the log variance,
s := log σ2, which is more numerically stable than regressing the variance σ2 directly to avoid
division by zero. The proposed Bayesian Smooth L1 loss function plot is presented in Fig. 1 in
comparison with the original Smooth L1 loss. The proposed loss function penalizes the neural
network better than the original Smooth L1 loss: for less noisy data, it penalizes the neural network
more for large prediction errors. For noisier data, it penalizes the neural network more uniformly,
less “trusting” the data labels.
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Figure 1: The proposed Bayesian Smooth L1 loss function for different estimates of aleatoric
uncertainty. At σ = 0.5, σ = 2.0, compared to the original Smooth L1 loss (red line).

3.2 Bayesian Focal Loss for Homoscedastic Aleatoric Uncertainty

Now we introduce the novel likelihood function for the classification task, which is the modified
Focal loss. In RetinaNet, the classification activation function is logistic, which is more convenient
for datasets with non-mutually exclusive classes. Thus, for the classification task, the likelihood can
be defined as:

p
(
y|fW (x), σ

)
= Sigmoid

(
1

σ2
fW (x)

)
(15)

with a positive noise scalar σ, which reflects homoscedastic uncertainty. This likelihood can also be
interpreted as the Boltzmann distribution where the input is scaled by σ2. We aim to maximise the
likelihood. For the classification task it can be effectively done using Focal loss, which behaves the
same way as log likelihood. Focal loss likelihood can be defined as:

BFL
(
p(y|fW (x), σ

)
= −

(
1

σ
(1− pt)σ

−2
)γ
×

×
(

1

σ2
log pt − log σ

) (16)

where BFL is Bayesian Focal loss and

pt =

{
p y = 1,

1− p otherwise

To obtain BFL from the original Focal loss, the main issue is to release fW (x) in logistic function
from the scaling factor 1/σ2. To solve this issue and obtain the new form of likelihood, the follow-

ing transitions are used: subtraction and addition of
1

σ2
log
(
1 + exp

(
fW (x)

))
term; simplifying

assumptions
1

σ

[
1 + exp

(
1

σ2
fW (x)

)]
≈

≈
[
1 + exp

(
fW (x)

)] 1
σ2 ,

(17)

and
1

σ

[
1 + exp

(
− 1

σ2
fW (x)

)]
≈

≈
[
1 + exp

(
−fW (x)

)] 1
σ2 ,

(18)
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which become an equality when σ → 1.

Bayesian Focal loss is equal to the original Focal Loss, when σ = 1, or p(y|fW (x) =
Sigmoid(fW (x)).

In our experiments, we train the network to predict the log variance, s := log σ2 to preserve
the numerical stability. The proposed Bayesian Focal loss function plot is presented in Fig. 2 in
comparison with the original Focal loss. Our loss function penalizes the neural network better than
the original Focal loss (σ=1 in the figure): for less noisy data, it penalizes the neural network less for
well-classified examples and more for large prediction errors. For noisier data, it penalizes the neural
network more uniformly, less “trusting” the data labels.

Figure 2: The proposed Bayesian Focal loss function for different estimates of aleatoric uncertainty
at σ = 0.7, σ = 1.0, σ = 2.0. At σ = 1.0 function is equal to the original Focal loss.

3.3 Multi-task Likelihood for Bayesian RetinaNet

For the multi-task Bayesian RetinaNet with output y1 for a localization task and y2 for a classification
task, we obtain the following minimization objective:

L(W,σ1, σ2) = BSmoothL1
(
fW (x), σ1

)
+

+ α ·BFL
(
fW (x), σ2

) (19)

where BSmoothL1
(
fW (x), σ1

)
is the Bayesian Smooth L1 loss for y1, BFL

(
fW (x), σ2

)
is

the Bayesian Focal loss for y2, α is the balancing coefficient that adjusts the impact of the
BFL

(
fW (x), σ2

)
term. This multi-task loss is optimised with respect to W as well as σ1 and

σ2.

Unlike in [14], our multi-task objective does not allow to weigh losses by tuning σ1 and σ2. It only
allows to learn these noise scalars and thus capture homoscedastic uncertainty.

4 Experiments and Results

In our experiments, as the backbone for RetinaNet and Bayesian RetinaNet we used only ResNet-50
due to the memory limitation. The architecture of Bayesian RetinaNet was the same as the original
RetinaNet model. The changes were made only for losses, which were replaced with the developed
objectives. For both models, we used image scale equal to 800.

4.1 Dataset

We evaluated our loss functions on the COCO 2017 dataset [19]. This dataset is known for being
quite noisy [15, 30], because it was crapped from the Flickr image database. The dataset consists
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of more than 330,000 images, with 220,000 labelled images and more than 1.5 million objects in
total. All objects are presented in the wild. The COCO dataset contains 80 object classes. Commonly,
images contain objects of multiple classes, but about 10% contain a single class only. All objects are
annotated with bounding box coordinates and classes, which are stored in the JSON format.

4.2 Evaluation

Experiments were conducted on a single NVIDIA Titan RTX GPU with 24GB of VRAM. The
original implementation of the RetinaNet model was taken from the detectron2 [31] library, based
on the pytorch [26] framework.

First, we trained the original RetinaNet model using Adam [16] optimizer with an initial learning rate
of 0.00001. The learning rate scheduler with warmup was used.

Next, we trained our model, which is Bayesian RetinaNet, using Adam optimizer with an initial
learning rate of 0.00001. The learning rate scheduler with warmup was also used. We initialized
s1 = log σ2

1 for the localization task with 1.0, s2 = log σ2
2 for the classification task with 0.0.

Both models training took 900,000 iterations, which is about 3 days on average. For our model we
conducted 5-fold cross-validation.

For evaluation, we used a standard script from the cocoapi [19] library. Models were evaluated on
the val and test-dev splits of the MS COCO 2017 dataset. The primary metric of the COCO is
mean average precision (mAP).

4.3 Results Analysis

Tables 1 and 2 show the results of comparing metrics for our model and the original RetinaNet-
ResNet-50 model. The original model achieved 35.9% mAP on the val set and 35.7% mAP on the
test-dev set, as reported in paper [21].

Table 1: Comparison of RetinaNet trained with original loss functions and Bayesian RetinaNet trained
with proposed loss functions, which model homoscedastic aleatoric uncertainty, on the val set of
the MS COCO dataset. Here, mAP is mean average precision presented for different IoU thresholds
and object sizes (small, medium, large), mAR is mean average recall presented for different numbers
of detections per image and object sizes. The results of Bayesian RetinaNet are presented with a
standard deviation.

Metric RetinaNet Bayesian RetinaNet (our)

mAP 35.9% 37.0±0.2%
mAP50 54.2% 55.2±0.6%
mAP75 38.4% 39.7±0.4%
mAPs 20.6% 21.1±0.1%
mAPm 38.9% 40.6±0.4%
mAPl 46.2% 47.7±0.7%
mARmax1 31.8% 32.2±0.3%
mARmax10 51.6% 51.9±0.6%
mARmax100 54.8% 55.1±0.7%
mARs 35.8% 35.2±1.1%
mARm 58.5% 59.2±0.5%
mARl 69.2% 69.8±0.8%

As can be seen, our model provides an average increase of 1.7% for the main mAP metric on the
test-dev set and increase of 1.1% on the val set. This result seems to confirm the hypothesis that
modeling aleatoric uncertainty can improve the accuracy of the detection problem solving, which
answers the RQ1. We can conclude that our proposed losses penalize the neural network better than
the original losses of RetinaNet. The average estimations of aleatoric uncertainties obtained during
the training were 0.124 for the regression task and 0.805 for the classification task. These values
correlate with the fact that the COCO dataset has noisy labels.
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Table 2: Comparison of RetinaNet trained with original loss functions and Bayesian RetinaNet trained
with proposed loss functions, which model homoscedastic aleatoric uncertainty, on the test-dev
set of the MS COCO dataset. Here, mAP is mean average precision presented for different IoU
thresholds and object sizes (small, medium, large). The results of Bayesian RetinaNet are presented
with a standard deviation.

Metric RetinaNet Bayesian RetinaNet (our)

mAP 35.7% 37.4±0.1%
mAP50 55.0% 55.7±0.5%
mAP75 38.5% 40.2±0.2%
mAPs 18.9% 21.1±0.3%
mAPm 38.9% 39.8±0.2%
mAPl 46.3% 46.5±0.4%

While all the average precision metrics obtained by Bayesian RetinaNet are higher compared to the
baseline, average recall metrics on the val set are better only in 4 of 5 cases. The reason of such
an effect is that our loss functions penalize the model more for false positive errors, while the true
positive rate increases less significantly. This fact is consistent with the functions plots: for example,
Bayesian Focal loss provides higher gradient values for bigger errors than the original Focal loss.

The proposed loss functions are easy for incorporating to the existing neural networks, that utilize
cross-entropy/Focal loss for the classification and L1/Smooth L1 loss for the localization tasks
solving. Thus, in future our losses can be scaled and applied for SpineNet [4], ATSS [32] and other
current state-of-the-art detection models. This answers RQ2. Modeling homoscedastic aleatoric
uncertainty can advance the neural network detectors robustness, help them better generalize to the
real-world scenarios and achieve higher performance.

5 Conclusion and Discussion

In this work, we have proposed the novel loss functions for the detection problem (i.e. joint
classification and localization), namely Bayesian Focal loss and Bayesian Smooth L1 loss functions.
The proposed functions are able to model homoscedastic aleatoric uncertainty during model training
and do not require the architecture changes.

The proposed losses were studied using the COCO 2017 dataset based on the RetinaNet-ResNet-50
model. As a result of the study, an increase of 1.7% by the mAP metric on the test-dev set
was achieved. The obtained result confirms the hypothesis that modeling homoscedastic aleatoric
uncertainty improves the accuracy of the detection problem solution. The average values of aleatoric
uncertainties obtained using our losses were 0.805 for the classification task and 0.124 for the
regression task.

In future work, we plan to apply the proposed loss functions to other models, which are based on the
RetinaNet architecture, for example, SpineNet [4], ATSS [32]. We also plan to evaluate the developed
functions on other datasets with known noise values to prove that the uncertainties estimates correlate
with these values. Furthermore, it is interesting to apply the developed loss functions to model
heteroscedastic aleatoric uncertainty, which can advance the detection accuracy and increase the
interpretability of detection per object.
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