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Abstract

High-dimensional classification and feature selection tasks are ubiquitous with the
recent advancement in data acquisition technology. In several application areas
such as biology, genomics and proteomics, the data are often functional in their
nature and exhibit a degree of roughness and non-stationarity. These structures pose
additional challenges to commonly used methods that rely mainly on a two-stage
approach performing variable selection and classification separately. We propose a
novel Gaussian process discriminant analysis (GPDA) that combines these steps in
a unified framework. Our model is a two-layer non-stationary Gaussian process
coupled with an Ising prior to identify differentially-distributed locations. Scalable
inference is achieved via developing a variational scheme that exploits advances in
the use of sparse inverse covariance matrices. We demonstrate the performance of
our methodology on simulated datasets and two proteomics datasets: breast cancer
and SARS-CoV-2. Our approach distinguishes itself by offering explainability as
well as uncertainty quantification in addition to low computational cost, which are
crucial to increase trust and social acceptance of data-driven tools.

1 Motivating example

We consider the context of predicting phenotypes and identifying biomarkers based on mass spec-
trometry (MS) data. MS technology measures the mixtures of proteins/peptides of tissues or fluids
and produces an MS spectrum (Cruz-Marcelo et al., 2008).The resulting experimental data consists of
discretely observed functional spectra, with typically tens of thousands of observed locations and just
a few hundred samples. Moreover, data at neighboring locations tends to be highly correlated, with
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Figure 1: Illustration of the SARS-CoV-2 data (Nachtigall et al., 2020), with the square root intensities
of the preprocessed spectra for (a) healthy controls and (b) SARS-CoV-2 positive patients (class-
average given in red).

the strength of such correlations varying across the mass-to-charge (m/z) range. In addition, MS data
tends to be noisy due to chemical noise, misalignment, calibration and other issues (Cruz-Marcelo
et al., 2008). As an example, Figure 1 depicts a set of processed MS spectra for healthy controls and
SARS-CoV-2 positive patients (Nachtigall et al., 2020), with the x-axis indicating the mass-to-charge
ratio (m/z) and the y-axis indicating the intensity of the protein or peptide ions.

To address challenges in the analysis of such datasets, we propose a novel Bayesian discriminant
analysis (DA) which performs variable selection and classification jointly, by combining recent
developments in deep Gaussian processes (Dunlop et al., 2018) to flexibly model the functional inputs
and incorporating Ising priors to identify differentially-distributed locations within a unified model
framework. To ameliorate the computational burden of posterior inference for high-dimensional
Gaussian processes (GPs), we develop a scalable inference algorithm that utilizes the link between
GPs and stochastic partial differential equations (SPDEs) to construct sparse precision matrices
(Lindgren et al., 2011; Grigorievskiy et al., 2017) and combine various variational inference schemes.

2 Model

Consider a set of n functional inputs {xi(t)}ni=1 defined on the domain D ⊂ R and their correspond-
ing class labels {yi}ni=1, where xi(t) ∈ R, yi ∈ Y , and Y is a set of class labels. We propose the
following model that performs the variable selection and the classification steps simultaneously on
the entire functional trajectory:

xi(t) = µk(t) + zi(t) + εk,i(t), (1)
zi | ψi ∼ GP(0,Kψi

) (2)

where yi = k ∈ {0, 1} refers to the class label; µk(t) ∈ R is the group-specific mean function;
Kψi

is a covariance function (or kernel) with observation-specific parameters ψi; εk,i(t) ∈ R is a
white-noise process with class- and location-dependent variance σ2

k(t) > 0; and GP(0,Kψ) denotes
a Gaussian process with zero mean and covariance kernel Kψ . We allow for variable selection in our
proposed model by defining a binary signal process γ(t) ∈ {0, 1} such that

µk(t) = γ(t)µ̃k(t) + (1− γ(t))µ̃∅(t) and σ2
k(t) = γ(t)σ̃2

k(t) + (1− γ(t))σ̃2
∅(t),

where µ̃k and σ̃2
k are the group-specific mean and noise variance processes at discriminative locations

and µ̃∅ and σ̃2
∅ are the common mean and noise variance processes at non-discriminative locations. In

the context of MS data, γ allows for detection of relevant m/z values within the classification model.

Two-level non-stationary Gaussian processes. To account for this varying correlation along the
spectrum, we assign a non-stationary covariance kernel (Paciorek and Schervish, 2003) for Kψi

.
Specifically, the kernel parameter, ψi = (τ, νi), consists of the magnitude τ > 0 and a location-
varying log length-scale process νi, i.e., Kψi

= KNS;τ,νi , and hence we may write

zi|τ, νi ∼ GP(0,KNS;τ,νi).
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At the second level, we place Gaussian process priors on the log length-scale processes with

νi(t) = R(t) + ζi, and R ∼ GP(µν ,KS;τ2,λ),

where KS;τ2,λ is a stationary covariance kernel with marginal scale τ2 and length scale λ. Here, each
observation-specific log length-scale process has been decomposed into a common component R(t)
to account for the location-varying covariance structure common across all observed functions, and
an observation-specific perturbation ζi ∈ R to allow for between-spectra variation in smoothness
across the entire domain.

Motivated by the link between GPs and SPDEs (Lindgren et al., 2011; Monterrubio-Gómez et al.,
2020), we employ an SDE representation of the nonstationary processes (Zhao et al., 2021):

dzi = −
1

exp(νi)
zidt+

√
2τ

exp(νi)
dω1, (3)

dR = − 1

λ
Rdt+

√
2τ2
λ
dω2, (4)

where νi(t) = R(t) + ζi and ω1 and ω2 are Wiener processes. From this representation, the induced
posterior precision matrices for discretized zi and R are tridiagonal which facilitates computational
shortcuts such as Thomas’ algorithm and the sparse inverse subset algorithm (Durrande et al., 2019).

2.1 Choice of priors

To reflect our prior belief that the underlying variable selection process γ is smooth, we assign a
linear chain Ising prior (Li and Zhang, 2010). In particular, the conditional distribution of γ(t) given
its corresponding set of neighbors with locations in Nt ⊂ {t1, . . . , tT } is

P(γ(t) = 1 | {γ(t′)}t′∈Nt
) = expit

{
−α+

∑
t′∈Nt

β(t, t′)γ(t′)

}
,

where expit(x) = {1+exp(−x)}−1, α ∈ R, and β(t, t′) > 0. Here, a larger value of α corresponds
to more sparsity in γ, whereas β controls the correlation and smoothness between the values of γ at
neighboring locations. In our context, we define Nt = {t− 1, t+ 1} and β(t, t′) = β.

We assign a hierarchical GP priors for the mean functions

µ̃k(t) | τ̃k, ν̃k ∼ GP(0,KNS;τ̃k,ν̃k),

ν̃k(t) | η̃, λ̃ ∼ GP(µν̃ ,KS;η̃,λ̃),

with hyperpriors τ̃k ∼ InvGa(Aτ̃ , Bτ̃ ) for k = 0, 1, ∅; η̃ ∼ InvGa(Aη̃, Bη̃); and λ̃ ∼ LogN(µλ̃, σ
2
λ̃
).

3 Posterior inference

Let θ denote the vector of all model parameters (excluding the hyperparameters ζi, λ, τ2, λ̃, η̃, α,
and β). We specify the mean-field family for the approximate posterior:

q(θ) = q(τ)q(R)

n∏
i=1

{q(zi)} ×
∏

k∈{∅,0,1}

q(µ̃k)q(ν̃k)q(τ̃k)
T∏
j=1

q(σ̃2
kj)

×
T∏
j=1

{q(γj)}.

The DAG for our proposed model is provided in Figure 2. Note that parameters in white, red, and
blue fill are updated with coordinate-ascent variational inference (CAVI), stochastic variational Bayes
(SVB) and maximum a posteriori (MAP) respectively, whereas gray fill denotes observed quantities.

3.1 Classification

Upon convergence of the variational parameters in the posterior inference phase, we proceed to derive
a classification rule for a new process xn+1(t) that follows the distribution as described in equation
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Figure 2: DAG representation of the proposed model. The colour fills denote the inference approach
adopted: blue for MAP; red for SVB; white for CAVI; and gray denotes observed data.

(1). This requires the predictive distribution p(yn+1, zn+1 | D,xn+1), where D denotes all observed
data. To simplify computations, we make the following mean field approximation for the predictive
distribution of yn+1 and zn+1:

p(zn+1, yn+1 | D,xn+1) ≈ q(zn+1)q(yn+1).

We adopt a CAVI update for zn+1 and yn+1. Since the approximate posterior for R has been
computed in the posterior inference phase, we only need an estimate for the perturbation ζn+1. This
may be computed via MAP estimation.

4 Numerical results

We compare our GPDA model with seven other competing methods - variational nonparametric DA
(VNPDA, Yu et al., 2020a), penalized linear DA with fused lasso penalty (penLDA-FL, Witten and
Tibshirani, 2011), random forest, sparse linear DA (SparseLDA, Clemmensen et al., 2011), variational
linear DA (VLDA, Yu et al., 2020b), and both the L2-regularized and L1-regularized support vector
machine (SVM) with linear kernels (Cortes and Vapnik, 1995; Fan et al., 2008). For the proteomics
datasets, we also compare with the traditional two-stage algorithm, involving peak detection and
followed by linear DA and quadratic DA.

4.1 Simulation study

In Simulation 1, we have a large proportion (40%) of the locations have weak predictive power,
whereas the rest of the locations do not have any predictive power. The GPDA model is correctly
specified, i.e., the covariance function of the i-th observation is Σ?

ik = D?
ε,k+Q

−1
NS;τ?,ν?

i
, and R? ∼

N(0, Q−1S;τ?
2 ,λ

?). For Simulation 2, we consider a similar scenario to Simulation 1 but with a much
smaller proportion (5%) of the locations having strong predictive power, whereas the rest of the
locations do not have any predictive power. For Simulation 3, we assess the performance of the
methods when the locations are mutually independent, the noise variances are equal between groups,
and a small proportion (10%) of the locations are weak signals, i.e. VLDA is correctly specified. This
is a boundary case whereby the true log length scale νi → −∞. Lastly, Simulation 4 allows us to
assess the performance of the methods when the GPDA model is misspecified. In particular, the
true covariance matrix has a uniform structure with all diagonal entries equal 1 and the off-diagonal
entries equal 0.95. A small proportion (10%) of the locations have strong predictive power.

4.2 Proteomics datasets

SARS-CoV-2: To improve COVID-19 testing capacity in countries that lack resources to handle
large-scale PCR testing, the SARS-CoV-2 dataset was collected using equipment and expertise
commonly found in clinical laboratories in developing countries. The dataset contains samples from
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Simulation 2
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Simulation 3
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Simulation 4
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Figure 3: Classification accuracy (left) and Matthews correlation coefficient (right) for Simulations 1
to 4. GPDA refers to our proposed model.

362 individuals, of which 211 were SARS-CoV-2 positive and 151 were negative by PCR testing.
The processed spectra contain T = 25, 001 variables.

Breast cancer: This dataset was collected to investigate and identify markers from plasma that
discriminate between controls and breast cancer patients. The processed spectra contain T = 10, 451
variables. Due to heterogeneity in breast cancers, in the following, we focus on discriminating
between healthy controls and HER2 (with n = 119).
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Figure 4: Classification accuracy (%) for SARS-CoV-2 (left) and breast cancer (right).

Supporting documents

The full paper and supporting R codes may be downloaded from https://github.com/
weichangyu10/GPDAPublic.

References
Clemmensen, L., Hastie, T., Witten, D., and Ersboll, B. (2011). Sparse discriminant analysis.

Technometrics, 53(4):406–413.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20:273–297.

Cruz-Marcelo, A., Guerra, R., Vannucci, M., Li, Y., Lau, C. C., and Man, T.-K. (2008). Comparison of
algorithms for pre-processing of SELDI-TOF mass spectrometry data. Bioinformatics, 24(19):2129–
2136.

5

https://github.com/weichangyu10/GPDAPublic
https://github.com/weichangyu10/GPDAPublic


Dunlop, M. M., Girolami, M. A., Stuart, A. M., and Teckentrup, A. L. (2018). How deep are deep
Gaussian processes? Journal of Machine Learning Research, 19(1):2100–2145.

Durrande, N., Adam, V., Bordeaux, L., Eleftheriadis, S., and Hensman, J. (2019). Banded matrix
operators for Gaussian Markov models in the automatic differentiation era. In Proceedings of the
22nd International Conference on Artificial Intelligence and Statistics, volume 89.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). Liblinear: A library for
large linear classification. Journal of Machine Learning Research, 9:1871–1874.

Grigorievskiy, A., Lawrence, N., and Särkkä, S. (2017). Parallelizable sparse inverse formulation
Gaussian processes (SpInGP). In 2017 IEEE 27th International Workshop on Machine Learning
for Signal Processing (MLSP), pages 1–6. IEEE.

Li, F. and Zhang, N. R. (2010). Bayesian variable selection in structured high-dimensional co-
variate spaces with applications in genomics. Journal of the American Statistical Association,
105(491):1202–1214.

Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between Gaussian fields and
Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of
the Royal Statistical Society: Series B, 73(4):423–498.

Monterrubio-Gómez, K., Roininen, L., Wade, S., Damoulas, T., and Girolami, M. (2020). Posterior
inference for sparse hierarchical non-stationary models. Computational Statistics & Data Analysis,
148.

Nachtigall, F. M., Pereira, A., Trofymchuk, O. S., and Santos, L. S. (2020). Detection of SARS-CoV-2
in nasal swabs using MALDI-MS. Nature Biotechnology, 38(10):1168–1173.

Paciorek, C. J. and Schervish, M. J. (2003). Nonstationary covariance functions for Gaussian process
regressions. In Advances in Neural Information Processing Systems.

Witten, D. M. and Tibshirani, R. (2011). Penalized classification using Fisher’s linear discriminant.
Journal of the Royal Statistics Society: Series B, 73(5):753–772.

Yu, W., Azizi, L., and Ormerod, J. T. (2020a). Variational nonparametric discriminant analysis.
Computational Statistics & Data Analysis, 142:106817.

Yu, W., Ormerod, J. T., and Stewart, M. (2020b). Variational discriminant analysis with variable
selection. Statistics and Computing, 30:933–951.

Zhao, Z., Emzir, M., and Särkkä, S. (2021). Deep state-space Gaussian processes. Statistics and
Computing.

6


	Motivating example
	Model
	Choice of priors

	Posterior inference
	Classification

	Numerical results
	Simulation study
	Proteomics datasets


