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Abstract

Traditional federated learning involves optimizing point estimates for the parame-
ters of the server model, via a maximum likelihood objective. Models trained with
such objectives show competitive predictive accuracy, however they are poorly
calibrated and provide no reliable uncertainty estimates. These, however, are par-
ticularly important in safety critical applications of federated learning, such as
self-driving cars and healthcare. In this work, we propose FSVI, a method to
train Bayesian neural networks in the federated setting. Bayesian neural networks
provide a distribution over the model parameters, which allows to obtain uncer-
tainty estimates. Instead of employing prior distributions and doing inference over
the model parameters, FSVI builds upon recent advances in functional variational
inference and posits prior distributions directly in the function space of the net-
work. We discuss two different approaches to federated FSVI, based on FedAvg
and model distillation respectively, and show its benefits compared to traditional
weight-space inference methods.

1 Method

In this paper we are concerned with neural networks, functions of data and parameters to out-
puts, f : X × Θ → Y , and supervised learning tasks where from some set of observations
D = {(xi,yi)}Ni=1, xi ∈ X , yi ∈ Y we want to learn the optimal set of parameters. We denote
the function f(·,θ) : X → Y as f ;θ. In the probabilistic setting we posit a prior distribution over
the parameters θ, governed by a set of hyperparameters ν, pν(θ); this induces a specific prior dis-
tribution over functions pν(f ;θ). The notation pν(θ) describes a distribution over θ, parametrised
by hyperparameters ν. Where it is clear, we will suppress the hyperparameter notation. Given an
observed dataset D and a likelihood function lD(f) (typically lD(f) =

∏
{x,y}∈D p(y|x, f ), which

maps a function to the likelihood of the data under said function, we are then interesting in obtaining
the posterior distribution over the parameters, given the observed data

pν(θ|D) =
lD(f ;θ)pν(θ)∫
lD(f ;θ)pν(θ)dθ

(1)
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We can then use this posterior distribution in order to obtain a distribution over predictions y∗

conditioned on a new input x∗ and the observed data D

pν(y∗|x∗,D) =

∫
θ∈Θ

p(y∗|x∗,θ)pν(θ|D)dθ =

∫
θ∈Θ

l(x∗,y∗)(f ;θ)pν(θ|D)dθ (2)

1.1 Variational Inference

Weight Space Variational Inference (WSVI) Typically computing the distribution pν(θ|D) is in-
tractable. Variational inference (Blei et al., 2017) approximates these distributions by first choosing
a parametric family of variational distributions, Q, and then finding the member of the variational
family that minimises the Kullback–Leibler (KL) divergence between the variational distribution
and the true posterior over parameters, DKL (qφ(θ)||pν(θ|D)). This term is typically decomposed
to make the objective computationally tractable as

DKL (qφ(θ)||pν(θ|D)) = −Eθ∼qφ(θ) [lD(f ;θ)] + DKL (qφ(θ)||pν(θ)) + log pν(D)

const.

(3)

where pν(D) =
∫
lD(f ;θ)pν(θ)dθ, the log model evidence. Thus we can see that minus the

first two terms of eq. (3) gives a lower bound on the log model evidence. The first term can be
approximated via Monte Carlo methods and the second term is analytic if we pick a suitable prior
and variational family. A large body of work performing variational inference on the parameters of
neural networks exists, with mixed success, particularly on larger networks and tasks.

Function Space Variational Inference (FSVI) Recent work (Burt et al., 2020) has however
shown that in more complex models such as neural networks, it is not the weights of the model
we should be performing variational inference on, but the functions these weights encode. Working
with spaces of functions is however non-trivial from a probabilistic perspective, and requires the
tools of measure theory (see appendix B for an introduction). Beginning with the KL divergence be-
tween a parametric variational measure over functions Qφ and the posterior measure over functions
PD, DKL (Qφ||PD), we arrive at a familiar looking objective

DKL (Qφ||PD) = −Ef∼Qφ
[lD(f)] + DKL (Qφ||Pν) +

∫
lD(f)dPν

const.

(4)

The main difference now is that DKL (Qφ||Pν) is a KL divergence between measures on function
spaces, which are in general not analytic. We follow Rudner et al., 2021 in their approach to approx-
imating this term, although others exists (e.g. Sun et al., 2019, see appendix C.1 for details).

1.2 Federated Learning (FL)

In the Federated Learning (FL) setting we typically have a a series of clients, each with a shard
of data Ds. The objective is to learn from this local data centrally without accessing it directly to
preserve privacy and reduce communication costs (Kairouz et al., 2021).

Federated Averaging (FedAvg) (McMahan et al., 2017) is the standard method for training neu-
ral networks in FL. It is applicable to problems with a global loss functions of the form

min
w∈Rd

f(w) where f(w) =
1

N

N∑
i=1

fi(w). (5)

A set of clients are selected at each round of the algorithm. Each client is sent the server model
and updates the model using its local data (typically by a variant of SGD). The clients return these
updated models to the server, and the server model is updated to the average of these weights.

Graphical model perspective on federated learning An alternative view of FedAvg is given
by Louizos et al., 2021, which formulates federated learning as a hierarchical model, with a set of
central server parameters θ and latent client parameters θs. The server parameters are learnt by
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optimising the data log-likelihood, with the client parameter distributions marginalised out.

ν∗ = arg max
ν

S∑
s=1

log p(Ds|ν) = arg max
ν

S∑
s=1

log

∫
p(Ds|θs)p(θs|ν)dθs. (6)

For optimization they introduce a variational distribution on each clients’ weights with hyper pa-
rameters νs and apply the EM algorithm.
S∑
s=1

log

∫
p(Ds|θs)p(θs|ν)dθs≥

S∑
s=1

Eθs∼qνs (θs) [log p(Ds|θs)+log p(θs|ν)−log qνs(θs)] . (7)

By adopting a Gaussian prior for p(θs|ν) and optimising this latent variable model with the hard
version of the Expectation-Maximisation (EM) one can obtain FedAvg.

1.3 Five algorithms for Federated Bayesian Learning

Here we present five new options for performing Federated Bayesian inference, three of with focus
on performing inference in function space rather than weight space.

1. Federated Variational EM Weight-space VI (FedVEM WSVI) Louizos et al., 2021 focus on
performing inference in typical ML models with point estimate weights. It is simple to extend this
framework to have a server model with parameter uncertainty. We achieve this by setting ν = [µ,σ],
p(θs|ν) = N (θs;µ,σ

2) and performing variational EM, i.e., doing variational inference for θs as
done by Blundell et al., 2015, at each shard with p(θs|ν) as the prior. The local and server update
rules are derived in Appendix D.2. We refer to this method as FedVEM WSVI.

2/3. Federated Averaging Weight-space / Function-space VI (FedAvg WSVI, FedAvg FSVI)
Both, WSVI and FSVI objectives can be written in the form required to apply FedAvg (McMahan
et al., 2017), i.e. a sum of local objective functions (c.f. Appendices D.1 and C.4). It is therefore
relatively simple to apply FedAvg in order to perform federated Bayesian inference. These methods
are referred to as FedAvg WSVI, FedAvg FSVI in the rest of the paper.

4. Federated Variational EM Function-space VI (FedVEM FSVI) Here we derive a new objective
function for federated Bayesian learning from the functional perspective, equivalent to performing
variational EM on a latent function hierarchical model. Similar to FedVEM WSVI we propose a
series of local variational function distributions, Qνs and a single global function distribution, Pν ,
where ν,νs are sets of hyper-parameters defining the probability measures. The single global model
forms a prior for the local models. The algorithm consists of alternating optimisation of

1. The local function distributions, given the global prior.
2. The global prior, to better match the local function distributions.

To derive the objective we use, we begin with the KL divergence between the joint local distributions,
Q =

∏S
s=1Qνs and the true posterior of the local functions given the data, PD, DKL (Q||PD). Note

this is the joint posterior over all local functions, given all the local data. Assuming that each local
function is independent of all the data except that shard’s local data, we get

DKL (Q||PD) =

S∑
s=1

DKL (Qνs ||Pν)− Ef∼Qνs
[log lDs(fXs)] + log

∫
lDs(fXs)dPν(fXs)

const.

, (8)

where fXs is the function evaluated at the local data input locations. Rearranging gives the desired
lower bound. The full derivation can be found in Appendix C.2. We optimise this objective by
alternating between optimising ν,νs, and apply the results of Rudner et al., 2021 to approximate
the first term. For the rest of the paper this method will be referred to as FedVEM FSVI.

5. FedVEM FSVI with global weight-space objective During the course of experimentation, we
observed particular difficulty with the server KL matching term in the FedVEM FSVI algorithm.
An alternative proposal is to perform the local inference in function space and do the server KL
matching in weight space. This objective is still maximizing a lower bound on the marginal data
likelihood (Appendix C.3). This algorithm is referred to as FedVEM HSVI (with HSVI standing for
Hybrid-Space Variational Inference).
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(a) PVI (b) FedAvg WSVI (c) FedVEM WSVI (d) FedVEM HSVI

(e) FedAvg FSVI (f) FedVEM FSVI

Figure 1: Example fits to the toy regression dataset

Table 1: Comparison of in- and out-of-distribution performance metrics (mean ± standard error over
random seeds) for MNIST. AUROC is measured based on entropy.

Method Accuracy ↑ NLL ↓ ECE ↓ OOD-AUROC ↑

PVI 99.28±0.01 0.0224±0 0.37±0.01 99.32

FedAvg WSVI 99.38±0.02 0.0248±0 0.69±0.03 99.46

FedVEM WSVI 99.30±0.01 0.0240±0 0.16±0.01 98.39

FedAvg FSVI 99.21±0.05 0.0699±0.0278 3.98±2.57 99.61

FedVEM HSVI 99.34±0.03 0.0284±0.0028 0.88±0.26 99.33

2 Experiments

We evaluate the described methods against PVI (Bui et al., 2018) on two toy federated learning
tasks. We show trade-offs between weight-space and function-space VI and discuss the short-
comings of each. In-depth descriptions of the model architectures and training procedures used
can be found in Appendix E.2.

2.1 Toy regression task

A 1d regression tasks allows to visually access the fit of the trained models as well as their uncer-
tainty estimates intuitively. Figure 1 shows the training and test datasets (details in Appendix E.2),
as well as samples from the individual trained models. We plot the mean plus/minus one standard
deviation of 100 functions sampled from the learned posteriors, as well as 10 random functions.

Most of the methods presented here perform reasonably well from a qualitative point of view (Ta-
ble 3 provides more quantitative metrics). The two exceptions to this are FedAvg WSVI, and
FedVEM FSVI. The performance of FedAvg WSVI may be due to tuning issues, although similar
amounts of time and practises were spent tuning the algorithms. The performance of FedVEM FSVI
is drastically worse, but comes with a much clearer explanation. Figure 2 shows the global posterior
distribution, with the local latent client distribution overlaid. It is clear that the server matching step
is not performing its function as intended. This remained despite significant tuning, and we believe
is due to optimisation difficulties of this objective, not a methodological flaw.

2.2 MNIST

Table 1 shows the performance of weight-space and function-space methods on MNIST. Accuracy,
negative log-likelihood (NLL) and expected calibration error (Guo et al., 2017) are evaluated on
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the test-set. All metrics are computed based on 1000 samples from the posterior, i.e. by averaging
the softmax-outputs. OOD-AUROC is computed based on the entropy of p(y|x) and we report
the average across three out of distribution datasets: Fashion-MNIST (Xiao et al., 2017), standard
uniform and standard normal noise. Detailed results can be found in Appendix F.2. We are interested
in good predictive accuracy on the in-distribution test-set, while being well-calibrated and assigning
higher entropy to out of distribution data.

We see that FedVEM WSVI is better calibrated than FedVEM HSVI, while FedVEM HSVI outper-
forms in likelihood. FedVEM FSVI has low likelihood and is badly calibrated, pointing to issues
similar to what we observed in the regression setting. Mainly our results confirm that MNIST is not
the right dataset to draw final conclusions from and serves as a proof-of-concept at most.

3 Conclusion

Our investigation into applying function-space variational inference to the federated learning setting
show promising initial results. Optimizing the function-space KL in FSVI with respect to the prior
appears to be challenging, as we encountered difficulties in FedVEM FSVI. We aim to further
develop and evaluate the HSVI approach on more challenging datasets, continue investigating the
challenges with FedVEM FSVIand explore better strategies for inducing-point selection. The latter
is of particular importance in the federated setting.
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A Related Work

While there exist no prior work on function-space inference in the federated learning setting, there
exist a number of prior weight space inference methods.

One popular line of work involves factorising the posterior over the data, and performing some type
of MCMC based sampling of these sub-posteriors, before fusing them back together (Bardenet et
al., 2017; Scott et al., 2016; Neiswanger et al., 2014; White et al., 2013; Wang and Dunson, 2014;
Minsker et al., 2014; Srivastava et al., 2015). These methods are typically employed in statistical
inference problems with tall data, but do not scale particularly well to models the size of modern
neural networks.

Ahn et al., 2014 develop a distributed version of stochasitc gradient Langevin dynamics (SGLD,
Welling and Teh, 2011), although do not apply the method to neural networks.

The works of Bui et al., 2018 and Hasenclever et al., 2017 are the most applicable to federated
inference in BNNs. Based on Variational Inference and Expectation propagation respectively, both
methods are weight-space inference methods, and rely on the existence of exponential families of
distributions over the space one is performing inference over, and so do not readily extend to the
functional setting.

B Measure-theoretic preliminaries

Through this paper we will also need some basic tools of measure theory, a rigorous formalisation of
probability, and so we briefly introduce these. A probability measure P is a function from a specific
set of subsets of some space X (this set of subsets is a sigma-algebra) into the range [0, 1]. The
probability of a given given event E is given by P (E) (as long as E is in the sigma-algebra). A
random variable Z is said to be distributed P , Z ∼ P if for all events (in the sigma algebra) Pr[Z ∈
E] = P (E). For two measures, P,Q, defined on the same space, we say Q is absolutely continuous
with respect to P , Q� P , if for all events (in the sigma algebra) P (E) = 0 =⇒ Q(E) = 0. Note
it is possible to have P � Q� P . If we have Q� P , then there exists some function f such that

Q(E) =

∫
E

fdP (9)

This function is called the Radon-Nikodym derivative, and is usually denoted f = dQ
dP . dQ

dP is also
called the density of Q with respect to P . In most of statistics, the space on which our random
variables live is some subset of Rk, for k < ∞. For such spaces we can choose a particular base
measure, i.e. a measure which we will compare all other measures to, called the Lebesgue measure,
which for k = 1, 2, 3 coincides with the standard notion of length, area and volume, and generalises
to higher k. Typically the Lebesgue measure is denoted dx, and so the density of a measure with
respect to the Lebesgue measure is the function such that P (E) =

∫
E
p(x)dx, which is recognisable

as the typical definition of a probability density. Once we have these densities with respect to the
same base measure, we can begin to manipulate them in the normal ways. When the densities of two
measures exist with respect to some common base measure then their Radon-Nikodym derivative is
simply the ratio of these densities, dQdP (x) = q(x)

p(x) .

The difficulty when working with probabilities on spaces of functions arises as, for example, the
space of functions f : R → R is equivalent to RR, i.e. k ≮ ∞. For these spaces there is no notion
of a Lebesgue measure, and so the choice of base measure to use becomes unclear. Instead we fall
back to using measure theory tools.

C Functional Variational Inference

C.1 Introduction to Functional Variational Inference

While the weights of a neural network are what define the function that it represents, they are not
in fact the thing we are interested in obtaining when performing inference on a neural network.
We are instead interested just in the functions that these parameters encode. In many situations,
such in linear regression, performing variational inference on the parameters versus on the functions
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the parameters encode turns out to be the same thing (Burt et al., 2020). However, due to the
significant symmetry present in the parametrisation of neural networks, and the resulting invariance
to parameter transformations, in the case of neural networks variational inference on the parameters
and the functions encoded is not the same.

To make this more concrete: Given a random variable Z ∼ P , we can transform this into a new
random variable by transforming it by a function g to give g(Z). The distribution of this new
random variable is denoted g∗P , the pushforwad measure of P by g.

The data processing inequality tells us that if we transform two measures in this way, they cannot
become more easy to tell apart. [Data processing inequality, Polyanskiy and Wu, 2014, Thm 6.2]
Let g be a measurable function. Then for two measures P , Q

DKL (g∗Q||g∗P ) ≤ DKL (Q||P ) (10)

with equality if and only if g is an injection. The immediate consequence of this is that we see
that measuring the KL divergence between distributions of weights in a neural network is distinctly
different to measuring the KL divergence between the pushforward measures on the space of func-
tions that these weights encode. We therefore would prefer to perform variational inference on
distributions in functions space, rather than weight space.

Starting from the measure theoretic definition of the log-likelihood, we can derive the measure
theoretic version of variational inference (Burt et al., 2020; Blei et al., 2017). Assuming f ∼ P ,
some stochastic process, defining lD as the likelihood function of the data and PD as the posterior
distribution of f given the data D, and given a variational distribution Qφ ∈ Q,

log

∫
lD(f)dP = DKL (Q||PD) +

∫
log lD(f)dQ− DKL (Q||P ) (11)

≥
∫

log lD(f)dQ− DKL (Q||P ) (12)

As in the weight space case, this first term can be Monte Carlo approximated as long as lD(f) is
analytic and we can sample from Q. The second term however is no longer easy to make analytic.

Two approaches have recently been proposed to approximating this term. Sun et al., 2019 prove the
following [Sun et al., 2019, Theorem 1] For measures P,Q on (the product sigma-algebra) of RX ,

DKL (Q||P ) = sup
X⊂X ,|X|<∞

DKL (QX ||PX) (13)

where QX , PX are the marginals of P,Q of the measures Q and P on the set X . In the objective
function Sun et al., 2019 replace this sup with an expectation over some distribution over index sets
and optimise the modified objective.

In contrast Rudner et al., 2021 approximate this divergence by linearising the stochastic function
around the mean of the weight distribution, and making prior conditional matching and posterior
marginal consistency assumptions, allowing for the evaluation of the divergence on a finite set of
index points. [Rudner et al., 2021, Proposition 1] For a mapping f of stochastic parameters θ with
meanm, covariance Σ, and Jacobian of the function at the mean parameters Jm(·) = ∂f(·;θ)

∂θ |θ=m,
the linearisation of the stochastic function f is given by

f(·;θ) ≈ f̃(·,θ) = f(·,m) + Jm(·)(θ −m) (14)

The distribution over the linearised mapping evaluated at a vector of inputsX ∈ Xn is given by

p(f̃(X;θ)) = N (f(X;m),Jm(X)ΣJm(X)>) (15)

For a variational distribution q(θ) and a prior distribution p(θ) over the weights θ, under additional
assumptions and approximations (see Rudner et al., 2021 Appendix B) we obtain the following
approximation to eq. (12)

q∗(θ) = arg max
q(θ)∈Qθ

N∑
i=1

Eq(f ;θ) [log p(yi|xi,θ)]

− DKL

(
q̃
(
f̃ (XI ;θ)

)∣∣∣∣∣∣p̃(f̃ (XI ;θ)
))

(16)

8



where

q̃(f̃(X;θ)) = N (f(X;m),Jm(X)ΣJm(X)>) (17)

p̃(f̃(X;θ)) = N (f(X;m0),Jm0
(X)Σ0Jm0

(X)>) (18)

m,Σ are the variational weight distribution parameters, m0,Σ0 are the prior weight distribution
parameters.

C.2 Functional Variational EM Objective

Consider the space of functions F = f : X → R, let there be a sigma algebra on this, σF such that
we get a measurable space (F , σF ). Next, consider the product space FS =

∏S
s=1 F , the product

space of measurable spaces over functions that is the measure space for the latent functions. We
now define:

1. PSν , a prior measure over local functions. This is a product of the same of the prior over
each space, PSν =

∏S
s=1 Pν

2. PD, the posterior measure over local functions. We assume that each local posterior is
independent of all data except the relevant local data, giving PD =

∏S
s=1 PDs .

3. Q, the approximate measure over local functions. By again following independence, we
get Q =

∏S
s=1Qνs , the product of local client function measures.

Next we minimise the following KL divergence:

DKL (Q||PD) Definition of KL

=

∫
RX

log
d
∏S
s=1Qνs

d
∏S
s=1 PDs

(f)d

S∏
s=1

Qνs(f) Plug in the product measures

=

∫
RX

log

M∏
s=1

dQνs
dPDs

(f)

M∏
s=1

dQνs(f) Product measure decomposition and RN derivatives

=

S∑
s=1

∫
RX

log
dQνs
dPDs

(f)

S∏
s=1

Qνs(f) Log rules + linearity of integration

=

S∑
s=1

∫
RX

log
dQνs
dPDs

(f)dQνs(f) Measures integrate away

=

S∑
s=1

∫
RX

log
dQνs
dPν

(f)
dPν
dPDs

(f)dQνs(f) RN derivative chain rule

=

S∑
s=1

∫
RX

log
dQνs
dPν

(f)dQνs(f)−
∫
RX

log
dPDs

dPν
(f)dQνs(f) Log rules

In the second term of the previous equation we see that we arrive at the Radon-Nikodym derivative
of the true posterior with respect to the prior; assuming that a proper definition of the likelihood
exists, we can use the measure theoretic Bayes rule Matthews et al., 2016:

dPDs

dPν
(f) =

lDs(f)∫
lDs

(f)dPν
(19)

where lDs
(f) is the likelihood. We will now follow Matthews et al., 2016 and include an additional

assumption. Firstly, we restrict the likelihood to depend only on the locations of the data, and define
a projection function πDs which, given the function, returns the function evaluated at the input
locations of Ds. In this way we will have that

dPDs

dPν
(f) =

dPDs

dPν
(πDs

(f)) =
lDs

(fXs
)∫

lDs(fXs)dPν
(20)

9
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and as a result, we end up with

DKL (Q||PD) =

S∑
s=1

DKL (Qνs ||Pν)− Ef∼Qνs
[log lDs

(fXs
)] + log

∫
lDs

(fXs
)dPν(fXs

)

const.

=⇒
S∑
s=1

log

∫
lDs

(fXs
)dPν(fXs

) ≥
S∑
s=1

Ef∼Qνs
[log lDs

(fXs
)]− DKL (Qνs ||Pν) (21)

C.3 FedVEM HSVI derivation

Here we show that the FedVEM HSVI approach is still maximizing a lower bound to the marginal
likelihood. This can be understood by considering the FedVEM FSVI objective

S∑
s=1

log

∫
lDs(fXs)dPν(fXs) ≥

S∑
s=1

Ef∼Qνs
[log lDs(fXs)]− DKL (Qνs ||Pν) (22)

Notice that the only term involving the prior hyper parameters ν is the KL-divergence
DKL (Qνs ||Pν). Since from the data processing inequality from Proposition C.1 we know that

DKL (Qνs ||Pν) ≤ DKL (qνs(θs)||pν(θs)) (23)

we can show that the functional ELBO is an upper bound to the weight-space ELBO

S∑
s=1

log

∫
lDs(fXs)dPν(fXs) ≥

S∑
s=1

Ef∼Qνs
[log lDs(fXs)]− DKL (Qνs ||Pν)

≥
S∑
s=1

Ef∼Qνs
[log lDs

(fXs
)]− DKL (qνs(θs)||pν(θs)) . (24)

Therefore, the weight-space ELBO optimized at the server is a proper lower bound to the log
marginal-likelihood.

C.4 FedAvg FSVI derivation

We start with the standard FSVI ELBO from Rudner et al., 2021

N∑
i=1

Eqν(f ;θ) [log p(yi|xi,θ)]− DKL

(
q̃ν

(
f̃ (XI ;θ)

)∣∣∣∣∣∣p̃(f̃ (XI ;θ)
))

, (25)

where ν are the variational parameters to be optimized. Assuming that there are M datapoints in
XI , Rudner et al., 2021 assume independence between those datapoints, so the KL term can be
decomposed as follows

DKL

(
q̃ν

(
f̃ (XI ;θ)

)∣∣∣∣∣∣p̃(f̃ (XI ;θ)
))

=

M∑
m=1

DKL

(
q̃ν

(
f̃ (xm;θ)

)∣∣∣∣∣∣p̃(f̃ (xm;θ)
))

. (26)

Now assuming that each client has a subset of the inducing pointsXI , i.e.,XIs, of size Ms, we can
rewrite the above objective as

N∑
i=1

Eqν(f ;θ) [log p(yi|xi,θ)]−
M∑
m=1

DKL

(
q̃ν

(
f̃ (xm;θ)

)∣∣∣∣∣∣p̃(f̃ (xm;θ)
))

=

S∑
s=1

(
Ns∑
i=1

Eqν(f ;θ) [log p(yi|xi,θ)]−
Ms∑
m=1

DKL

(
q̃ν

(
f̃ (xm;θ)

)∣∣∣∣∣∣p̃(f̃ (xm;θ)
))

,

)
(27)

which is a sum of local optimization problems, with N =
∑S
s=1Ns and M =

∑S
s=1Ms. Conse-

quently, FedAvg can be applied in order to optimize ν.
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D Weight-space Variational Inference

D.1 Variational Bayes

We start with the standard ELBO and transform it into a sum of local optimization problems:

LD(ν) = Eθ∼qφ(θ) [log lD(f ;θ)]− DKL (qφ(θ)||pν(θ)) (28)

= Eθ∼qφ(θ)

[
S∑
s=1

log lDs(f)

]
− DKL (qφ(θ)||pν(θ)) (29)

=

S∑
s=1

[
Eθ∼qφ(θ) [lDs

(f)]− 1

S
DKL (qφ(θ)||pν(θ))

]
=

S∑
s=1

LDs
(ν), (30)

where

∇νLDs
(ν) ≈ ∇ν

[
Eθ∼qφ(θ)

[
|Ds|
M

M∑
i−1

log l(xs,i,ys,i)(f ;θ)

]
− 1

S
DKL (qφ(θ)||pν(θ))

]
(31)

≈ |Ds|∇ν

[
Eθ∼qφ(θ)

[
1

M

M∑
i−1

log l(xs,i,ys,i)(f ;θ)

]
− 1

S · |Ds|
DKL (qφ(θ)||pν(θ))

]
,

(32)

(xs,i,ys,i) corresponds to the ith datapoint on client s and θ ∼ qφ(θ) implicitely using the local
reparameterization trick (Kingma, Salimans, et al., 2015). As is typically done in FedAvg, the
server interprets the difference (νt−νt+1

s ) between the current server-parameters νt and the updated
parameters by client s as a gradient to be applied by a server-side optimizer. The server is responsible
for weighing the individual clients’ updates by their local data-set size Ds. Both, pν(θ) and qφ(θ)
are parameterized as Gaussian distributions under the mean-field assumption.

D.2 Federated Variational Expectation Maximization

We start with the objective established in (Louizos et al., 2021).

L(θ,ν1:S) =

S∑
s=1

Eθs∼qνs (θs) [log p(Ds|θs) + log p(θs|ν)− log qνs(θs)] (33)

We interpret the server weights as the hyperparameters of some distribution, ν = [µ,σ], in this case
a normal distribution. Locally, clients optimize equation (33) with respect to νs while the server
optimizes ν:

∇µL(ν,ν1:S) =

S∑
s=1

Eθs∼qνs (θs)[∇µ log p(θs|ν)] (34)

=

S∑
s=1

Eθs∼qνs (θs)[−
1

σ2
(µ− θs)] = 0 (35)

=⇒ µ∗ =
1

S

S∑
s=1

Eθs∼qνs (θs)[θs] =
1

S

S∑
s=1

µs (36)
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For σ2 we parameterize σ2 = expα and investigate

∇αL(θ,ν1:S) = σ2∇σ2L(w) (37)

= σ2
S∑
s=1

Eθs∼qνs (θs)[∇σ2 log p(θs|ν)] (38)

= σ2
S∑
s=1

Eθs∼qνs (θs)

[
− 1

2σ2
+

1

2σ22 (µ− θs)2

]
(39)

= −S
2

+
1

2σ2

S∑
s=1

[(µ− µs)2 + σ2
s ] = 0 (40)

=⇒ σ2∗ =
1

S

S∑
s=1

[(µ− µs)2 + σ2
s ] (41)

=⇒ α∗ = log

(
1

S

S∑
s=1

[(µ− µs)2 + σ2
s ]

)
(42)

We interpret µt − µ∗t as well as αt − α∗t+1 as gradients in the usual way to be applied by a
server-side optimizer.

E Experimental details

E.1 Hyperparameter tuning

Weight-space methods (Reddi et al., 2021) showed the importance of jointly tuning the local
learning rate ηs, the server learning rate η and optionally τ when using more advanced server-side
optimizers than SGD. Consequently, we tune these three parameters extensively on FedAvg WSVI
for our MNIST experiments, as detailed in Table 2. For this initial sweep, we initialize σ2

init =
1e−5 and train for only 300 communication rounds. This low value for initializing the σ2 of qφ(θ)
causes the model to have very low sampling noise in its gradients and ensures faster convergence.
Subsequently, we tune σ2

init and train for 500 rounds in order to allow enough time for the KL-term
in the ELBO objective to decrease. We found the hyperparameters for η, ηs and τ to generalize well
to FedVEM WSVI and only tune σ2

init as described for FedAvg WSVI. For PVI, the dampening
factor ρ plays a role similar to the server-side learning rate η. We first tune ηs and σ2

init jointly,
keeping ρ = 0.96 and training for 500 rounds. We observe that the training loss tends to increase
after some point during training, which we mitigate by setting a higher initial value of ρ = 0.98
annealing ρ during training from 0.98 to 0.999 following a cosine annealing schedule.

For the regression case, we tune hyper parameters in an unstructured way and find the use of Adam
at the server important. For both, FedVEM WSVI and FedAvg WSVI, we set η = 0.01 and keep τ
at the default value. Curiously, we found that for the local optimizer, FedVEM WSVI requires Adam
(η = 0.001) to function well, whereas FedAvg WSVI requires SGD (η = 0.001). For PVI, we use
Adam (η = 0.0001) locally and set ρ = 0.

Function-space methods For the function-space VI we use the same hyperparameters as the ones
from the weight-space VI methods. We also introduced one more hyperparameter, a weighting
factor β in front of the function-space KL-divergence. This was the only extra hyperparameter that
we tuned. For the inducing point strategy at each client we sampled a random datapoint from the
local dataset and added independent uniform noise on each (normalized) pixel by sampling from
U [−1/255, 1/255] on each iteration of local training.

E.2 Experimental details

Federated MNIST The MNIST dataset is not naturally split into clients. In order to have an
artificial testbed for federate algorithms using MNIST, we split the training-set into S = 100 clients
in a non-i.i.d. fashion according to the labels. Each client’s label distribution is drawn from Dir(α =
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Table 2: Hyperparameter ranges for MNIST

Method Parameter Ranges Chosen

PVI
ηs {10−3, 10−2.5, 10−2, . . . , 10−1} 10−3

σ2
init {10−4.5, 10−4, 10−3.5} 10−4

FedAvg WSVI

ηs {10−3, 10−2.5, 10−2, . . . , 100} 10−1

η {10−3, 10−2.5, 10−2, . . . , 10−1} 10−2.5

τ {10−5, 10−4.5, 10−3, . . . , 10−1} 10−4

σ2
init {10−5, 10−4.5, 10−4, . . . , 10−2.5} 10−3

FedVEM WSVI σ2
init {10−5, 10−4.5, 10−4, . . . , 10−2.5} 10−3

FedAvg FSVI β {1, 0.1, 0.05, 0.01, 0.005, 0.001} 0.005

FedVEM FSVI β {1, 0.1, 0.05, 0.01, 0.005, 0.001} 0.005

1.0), resulting in heavily skewed distributions. All models are trained for 3000 communication
rounds.

Regression Our toy regression data-set is created by sampling 200 data-points x′ uniformly in
[0, 1). Subsequently, these data-points are scaled to x = 5 · (x′ · (0.82 − 0.1) + 0.1). We sample
200 random noise elements ε ∼ N (0, 0.03I) and compute

y = sin

(
−3π

5
(x+ ε) + 0.5

)
+ cos

(
−6π

5
(x+ ε)

)
+ 8ε. (43)

We randomly select 160 input-output pairs (x, y) to keep as training-set and use the remaining 40
for validation. For creating a non-i.i.d. federated split of the data, we sort the training-set according
to x and assign one half of the data-points to each of the 2 clients. All models are trained for 3000
communication rounds.

Models For MNIST classification, we use the LeNet5-architecture LeCun et al., 1998 without
dropout or weight-decay. The regression experiments are performed with a 2-layer MLP of 100
hyperbolic tangent units each.

Optimizers For all our methods, we use Adam Kingma and Ba, 2017 as server-side optimizer
and SGD as client-side optimizer. The exception is with PVI, which prescribes its own server-side
update rule and introduces dampening as described in the previous section. We found using Adam
as client-side optimizer crucial for good performance with PVI.

Seeds We repeat the MNIST experiments with different seeds. Standard-error in Tables 1 and
4 are based on 8 seeds for FedVEM WSVI, 7 seeds for FedAvg WSVI and 8 seeds for PVI. For
FedAvg FSVI we evaluate on 2 seeds and on 3 seeds for FedVEM HSVI, due to time constraints.

F Additional experiments

F.1 Toy regression metrics

For a quantitative evaluation of model fit and out of distribution performance, Table 3 contains
negative log-likelihood, expected calibration error as defined in Levi et al., 2020 a well as the area
under the receiver operating curve (OOD-AUROC) based on the standard-deviation for individual
data-points based on 100 samples from the posterior. OOD is defined as the union of two ranges
in the input space, one with lower values than then in-distribution data and one with higher values.
Specifically, the OOD ranges to the left and to the right as wide as the range of in-distribution data.
We sample 1000 points from this range to evaluate OOD-AUROC.

FedVEM HSVI offers the best-calibrated predictions, although it sacrifices a little in likelihood com-
pared to FedVEM WSVI which also offers more convincing OOD detection performance. Although

13



Table 3: Metrics for toy regression task

Method NLL ↓ ECE ↓ OOD-AUROC ↑

PVI 0.3442 45.26 21.61

FedAvg WSVI 1.2293 53.08 10.0

FedVEM WSVI 0.2192 53.54 54.47

FedAvg FSVI 0.4218 37.28 56.51

FedVEM HSVI 0.2994 35.52 36.52

Figure 2: Plot of the fit in the main paper for FedVEM FSVI, with the local client functions plotted
as well

FedAvg FSVI appears to be well calibrated and useful for OOD detection, the figures in the main
text reveal that the learned functions miss the details of the data-set.

F.2 OOD-AUROC on MNIST

In the main-text, we report the average OOD-AUROC across Fashion-MNIST, Gaussian noise and
uniform noise. Here we take these apart and report the OOD-AUROC on individual out of distribu-
tion datasets in Table 4.

Table 4: OOO-AUROC on different out of distribution datasets

Method Fashion MNIST Uniform Gaussian

PVI 99.30±0.05 100.0±0 98.67±0.05

FedAvg WSVI 99.21±0.13 100.0±0 99.17±0.13

FedVEM WSVI 95.33±0.5 99.88±0.03 99.95±0.02

FedAvg FSVI 99.60±0.18 99.99±0.01 99.20±0.55

FedVEM HSVI 98.74±0.17 99.95±0.04 98.29±0.57
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