
Reflected Hamiltonian Monte Carlo

Khai Xiang Au
Integrative Sciences and Engineering Programme

National University of Singapore
khai@u.nus.edu

Alexandre Thiery
Department of Statistics and Applied Probability

National University of Singapore
a.h.thiery@nus.edu.sg

1 Background

We briefly describe the standard Hamiltonian Monte Carlo (HMC) method [4, 14] to prepare the
machinery needed for Reflected Hamiltonian Monte Carlo (RHMC). Consider a d-dimensional
position variable q ∈ Rd distributed according to a target distribution with an unnormalized density
π : Rd → R. The HMC method augments the position space with an auxiliary momentum variable of
the same dimension p ∼ N(p | 0,M), where M ∈ Rd×d is the mass matrix. The Hamiltonian is then
defined by H(q,p) ≡ − log π(q) + 1

2 ⟨p,M
−1p⟩. The sampler explores the joint density

π(q,p) ≡ exp{−H(q,p)} = π(q)× N(p | 0,M) (1)

by evolving the Hamiltonian dynamics dp
dt = −∂qH(q,p) = ∇ log π(q); dq

dt = ∂pH(q,p) = M−1 p.
This is achieved numerically usually with the leapfrog integrator [8, 13]

p1/2 = p0 +
δ
2 ∇ log π(q0). q1 = q0 + δM−1p1/2, p1 = p1/2 +

δ
2 ∇ log π(q1) (2)

for a time-discretization parameter δ > 0 called the step size. Iterating L ≥ 1 leapfrog steps of step
size δ > 0 approximately evolves the dynamics for an integration time of T = L× δ. As the leapfrog
integrator imperfectly conserves the Hamiltonian, a standard Metropolis-Hastings accept-reject step
is necessary to maintain detailed balance. To ensure ergodicity, the momentum variable p ∈ Rd is
regenerated from N(0,M) regularly.

2 Reflected Hamiltonian Monte Carlo

The RHMC is composed of the (deterministic) alternation of two Markov kernels: (1) a reflected
Hamiltonian dynamic [15, 20, 16, 1], (2) a momentum update. The resulting Markov kernel lets the
joint density π invariant. We detail the RHMC Markov kernel below and present the pseudo-code in
Algorithm 1.

Reflected Hamiltonian Dynamics. Starting from (qk,pk), a proposal (q′,p′) is obtained by the
Hamiltonian flow for a duration ∆T > 0, realised by taking 1 leapfrog step (2). The proposal (q′,p′)
is accepted with probability

α1(qk,pk) = 1 ∧ exp [−H(q′,p′) + H(qk,pk)]. (3)

Upon acceptance, the new position is set as (q̂k, q̂k) = (q′,p′). Upon rejection, a new proposal
(q′′,p′′) is generated by reflecting the momentum with respect to the affine hyperplane orthogonal to

Bayesian Deep Learning workshop, NeurIPS 2021.



g ≡ ∇ log π(q′) and passing through q′, and then following the Hamiltonian dynamics for a duration
∆T > 0. Precisely, the reflected momentum p′

R defined as

p′
R = p′ − 2

⟨p′,M−1g⟩
⟨g,M−1g⟩

g. (4)

The proposal (q′′,p′′) is accepted with the usual delayed-rejection probability [19, 7]

α2(qk,pk) = 1 ∧
{[

1− α1(q
′′,−p′′)

1− α1(qi,pi)

]
exp [−H(q′′,p′′) + H(qk,pk)]

}
, (5)

Upon acceptance, the new state is set as (q̂k, q̂k) = (q′′,p′′). Upon rejection, the final state is
obtained by negating the momentum so that (q̂k, p̂k) = (qk,−pk).

Figure 1: A 2D visualisation of the Reflected Hamiltonian Dynamics. Starting from (qk,pk), the state
(q′,p′) is proposed (blue arrow). Upon rejection, the delayed-rejection state (q′′,p′′) is proposed
(green arrow). If the second proposal is also rejected, then the sampler remains at qk and has its
momentum negated.

Momentum Updates. We discuss two standard mechanisms [16, 11], both depending on a crucial
parameter κ > 0. Consider an initial state (q̂k, p̂k).

1. Full refreshment: with probability p = 1 − exp[−κ δ], the new state is set as
(qk+1,pk+1) = (q̂k, ξ) where ξ ∼ N(0,M) is a newly generated momentum. With
probability (1 − p), the state is unchanged, i.e. (qk+1,pk+1) = (q̂k, p̂k). This can be
understood as a discretization on the time-interval (t, t + δ) of the Markov process that
completely refreshes the momentum at rate κ > 0.

2. Auto-regressive refreshment: set α = exp[−κ δ/2] and β =
√
1− α2 so that α2+β2 = 1

and generate ξ ∼ N(0,M). The new state (qk+1,pk+1) is defined as qk+1 = q̂k and

pk+1 = α p̂k + β ξ.

This is similar to the momentum update date in the Horowitz’s second-order Lanvegin Monte
Carlo (L2MC) method [11] and can be understood as the discretization on the time-interval
(t, t+ δ) of an Ornstein-Uhlenbeck process dP = −κ/2P dt+ κ1/2 M1/2 dBt, where Bt

is a standard Brownian motion in Rd.

Note the relation between the update rate κ in RHMC and the number of leapfrog steps L ≥ 1 in
HMC. In the RHMC method with full refreshment, on average, the momentum is refreshed after a
duration O(1/κ). Similarly, when implementing a standard HMC method with parameter δ > 0
and L ≥ 0, the momentum variable is fully refreshed after a duration T = L × δ. In other words,
parameter κ can be thought of as the equivalent of 1/Lδ. An unsuitably large κ leads to overly
frequent momentum updates leading to a diffusive and inefficient behaviour. On the other hand,
when κ is set too small the RHMC sampler gets trapped on the same Hamiltonian level set for many
iterations, diminishing its exploration of the target distribution.

2.1 Tuning the update rate parameter

We advocate to tune the parameter κ based on short preliminary runs. Consider a function of interest
φ : Rd → R. Our proposed tuning approach is based on the remark [17] that in high dimensions the

2



Algorithm 1 RHMC Kernel
Input: Current position q, current momentum p
Parameter: Step size δ, update rate κ, mass matrix M .
Output: Updated position q̃, updated momentum p̃.

1: Function RHMCKernel (q,p)
2: (q′,p′)← Leapfrog(q,p) from Equation 2
3: A1 ← α1(q,p) from from Equation 3
4: if Uniform(0, 1) < A1 then
5: (q̃, p̂)← (q′,p′)
6: else
7: p′

R ← Reflect(p′, q′) from Equation 4
8: (q′′,p′′)← Leapfrog(q′,p′

R) from Equation 2
9: A2 ← α2(q,p) from Equation 5

10: if Uniform(0, 1) < A2 then
11: (q̃, p̂)← (q′′,p′′)
12: else
13: (q̃, p̂)← (q,−p)
14: end if
15: end if
16: p̃← Refresh p̂ following Momentum update scheme 1 or 2
17: return q̃, p̃
18: EndFunction

auto-correlation function of {φ(qκ
j )}Nj=1 decays approximately exponentially at some rate λ > 0.

Therefore, the aim is to tune the parameter κ to approximately maximize λ. We advocate choosing a
fixed correlation threshold γ ∈ (0, 1), set to γ = 10% in our experiments, and record the first lag
∆̂(κ) when the auto-correlation falls below this threshold, i.e. Corr[φ(qk), φ(qk+∆̂)] ≤ γ. This

leads to an estimate of the rate of decay λ̂(κ) ≡ − log(γ)/∆̂(κ), which can be maximized over the
parameter κ over a small grid-search. The preliminary chains used for our work is 2000 samples
long.

3 Experiments

We test the samplers on a strongly-correlated Gaussian setting, a high-dimensional parameter esti-
mation problem, and eight classification problems commonly used in the Bayesian neural network
literature [9, 18, 3, 12].

Evaluation metric. We define sampling efficiency as the effective sample size (ESS) [6, 5] per
number of gradient computations. For parameter estimation tasks, we are interested in the mixing of
the log-target process [16], i.e. the process {log π(qk)}k≥0 . For neural-network classification tasks,
we study of the mixing of the negative averaged log-likelihood evaluated on a test set [12]

Baseline methods. We benchmark the performance of RHMC with full refreshment (RHMC-F)
and RHMC with auto-regressive refreshment (RHMC-AR) against Metropolis-adjusted Langevin
algorithm (MALA), No-U-Turn Sampler (NUTS), Horowitz’sL2MC (Generalised HMC with L = 1)
[11], and HMC with jittering in the number of leapfrog steps L [21, 9], where L is tuned by an
exhaustive grid-search. Specifically, at each iteration the number of leapfrog steps taken is drawn
independently from DiscreteUniform(1, L).

4 Discussion

Optimal RHMC vs optimal L2MC vs optimal HMC. The optimal samplers tuned by grid-search
over the tuning parameters κ and L respectively using long chains. In more than half of the examples
do either RHMC-AR or RHMC-F achieve overall best performance. Indeed, the results above are

3



Table 1: ESS per gradient call relative to NUTS, with best results (aside from exhaustively-tuned
HMC) underlined and in brackets optimal results from an exhaustive grid-search of κ.

Name HMC RHMC-F RHMC-AR L2MC MALA NUTS

Gaussian 6.73 1.37 (3.33) 0.70 (5.08) 1.02 (4.75) 0.11 1.00
Australian Credit (NN) 5.46 0.69 (1.87) 0.72 (1.70) 0.22 (0.98) 0.19 1.00
German Credit (NN) 3.07 0.80 (1.45) 1.53 (1.71) 0.52 (0.77) 0.14 1.00
Iris (NN) 2.65 2.42 (3.77) 1.85 (5.58) 1.74 (2.06) 0.60 1.00
Banknote (NN) 5.98 3.18 (6.93) 3.40 (9.10) 2.65 (5.02) 1.81 1.00
Red Wine (LR) 4.98 6.33 (7.77) 4.38 (8.70) 4.26 (4.47) 0.71 1.00
Australian Credit (LR) 1.37 2.09 (3.57) 2.65 (3.54) 2.39 (2.62) 1.80 1.00
German Credit (LR) 1.21 1.11 (2.09) 2.03 (2.03) 1.30 (1.74) 0.48 1.00
Item Response (LR) 8.74 0.01 (7.78) 9.15 (11.75) 12.85 (12.85) 6.57 1.00

naive in that running long chains over a large grid is unrealistic in practical applications. That said,
this comparison serves to demonstrate the prospects of a well-tuned RHMC.

Performance of RHMC, tuned as suggested. Using our proposed tuning strategy for κ, we
observe that either RHMC-AR or RHMC-F delivering overall better sampling performance compared
to NUTS [10], MALA, and L2MC in all but one test example. In half of the examples, the RHMC
even beats HMC, even with L tuned via an impractically large grid-search. Unsurprisingly, the tuning
strategy fails to identify good κ settings in some scenarios, e.g. RHMC-F in the Item Response
example. With respect to the optimal κ settings, on average RHMC-F achieves 55% of its optimal
efficiency; RHMC-AR achieves 57% of its optimal efficiency.

Benefits of an auto-regressive momentum update. Note that if we replace the momentum refresh
of MALA with the auto-regressive momentum refresh described in 2, we arrive at the L2MC. We
observe that L2MC beat MALA in every experiment and attribute this improved sampling efficiency
of L2MC over MALA to the auto-regressive momentum refresh.

Benefits of the reflected Hamiltonian dynamics. RHMC-AR can be thought of as L2MC with
the addition of a delayed-rejection step described in the reflected Hamiltonian dynamics. In this
view, we see that on average RHMC-AR performs 50% better than L2MC, which showcases the
improved mixing due to the reflected Hamiltonian dynamics. Note that we have taken into account
the additional cost due to the delayed-rejection proposal computations.

Practical considerations. A practical advantage of RHMC is that it can be implemented on the
GPU with ease, making the tuning of update rate κ inexpensive as multiple chains can be run in
parallel, e.g. using vmap function in JAX [2]. With a rough tuning of RHMC based on our suggestion
to run many short chains, we observe competitive results when compared to baseline methods.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

4



1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section ??
(b) Did you describe the limitations of your work? [Yes] See Section 4
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] It is available
upon request / in the full paper

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [No] It is available upon request / in the full paper

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] It is available upon request / in the full paper

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] see Section 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] see Section 3
(b) Did you mention the license of the assets? [Yes] see Section 3 for citation of UCI

datasets
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] No personal data were used
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] No personal data were used
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

References
[1] Alexandre Bouchard-Côté, Sebastian J Vollmer, and Arnaud Doucet. The bouncy particle

sampler: A nonreversible rejection-free markov chain monte carlo method. Journal of the
American Statistical Association, 113(522):855–867, 2018.

[2] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[3] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[4] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte
carlo. Physics letters B, 195(2):216–222, 1987.

[5] Charles J Geyer. Practical markov chain monte carlo. Statistical science, pages 473–483, 1992.

[6] Peter W Glynn and Ward Whitt. Estimating the asymptotic variance with batch means. Opera-
tions Research Letters, 10(8):431–435, 1991.

5



[7] Peter J Green and Antonietta Mira. Delayed rejection in reversible jump metropolis–hastings.
Biometrika, 88(4):1035–1053, 2001.

[8] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration illustrated
by the störmer–verlet method. Acta numerica, 12:399–450, 2003.

[9] Matthew Hoffman, Alexey Radul, and Pavel Sountsov. An adaptive-mcmc scheme for set-
ting trajectory lengths in hamiltonian monte carlo. In International Conference on Artificial
Intelligence and Statistics, pages 3907–3915. PMLR, 2021.

[10] Matthew D Hoffman, Andrew Gelman, et al. The no-u-turn sampler: adaptively setting path
lengths in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

[11] Alan M Horowitz. A generalized guided monte carlo algorithm. Physics Letters B, 268(2):247–
252, 1991.

[12] Pavel Izmailov, Sharad Vikram, Matthew D. Hoffman, and Andrew Gordon Wilson. What
are bayesian neural network posteriors really like? In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages
4629–4640. PMLR, 2021.

[13] Benedict J Leimkuhler and Robert D Skeel. Symplectic numerical integrators in constrained
Hamiltonian systems. Journal of Computational Physics, 112(1):117–125, 1994.

[14] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte
carlo, 2(11):2, 2011.

[15] Elias AJF Peters et al. Rejection-free monte carlo sampling for general potentials. Physical
Review E, 85(2):026703, 2012.

[16] Chris Sherlock and Alexandre H. Thiery. A discrete bouncy particle sampler, 2021.

[17] Alan Sokal. Monte carlo methods in statistical mechanics: foundations and new algorithms. In
Functional integration, pages 131–192. Springer, 1997.

[18] Stan Development Team. Stan modeling language users guide and reference manual, 2019.
Version 2.27.

[19] Luke Tierney and Antonietta Mira. Some adaptive monte carlo methods for bayesian inference.
Statistics in medicine, 18(17-18):2507–2515, 1999.

[20] Paul Vanetti, Alexandre Bouchard-Côté, George Deligiannidis, and Arnaud Doucet. Piecewise-
deterministic markov chain monte carlo. arXiv preprint arXiv:1707.05296, 2017.

[21] Ziyu Wang, Shakir Mohamed, and Nando Freitas. Adaptive hamiltonian and riemann manifold
monte carlo. In International conference on machine learning, pages 1462–1470. PMLR, 2013.

6


	Background
	Reflected Hamiltonian Monte Carlo
	Tuning the update rate parameter

	Experiments
	Discussion

