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Abstract

The usability of machine learning solutions in critical real-world applications relies
on the availability of an uncertainty measure that reflects the confidence in the
model predictions. In this work, we present an empirical analysis of uncertainty
estimation approaches in Deep Learning models. We contrast Bayesian Neural
Networks (BNN) against Monte Carlo-dropout (MC-dropout) methods to evaluate
their performance and uncertainty scores in two classification tasks with different
dataset characteristics.

1 Introduction

Neural Networks have become the state-of-the art methods for identifying functional elements in
the genome (Eraslan et al.,|2019). Superior performance, scalability, and the rise of interpretation
approaches (Carvalho et al., |2019; |[Samek et al., 2020; |Bach et al.,|2015; Sundararajan et al.| 2017)
have made Deep Learning models a popular choice in many genomics applications. For example,
Deep Learning models have been used to accurately map the genomic sequences to the associated
functional molecular readouts, such as protein binding information (Ghanbari and Ohler, 2020). In
doing so, they identify short sequence elements called "motifs" that serve as target binding sites for
proteins like transcription factors (TFs) and RNA-binding proteins (RBPs). These motifs can be
discovered through interpretation of the network (Sundararajan et al.l 2017), leading to new insights
and a better understanding of the genomic associations.

For the ultimate use of these models in many critical downstream tasks (e.g., predicting genetic variant
effects), it is essential to provide a measure for the confidence in the model’s outputs. Providing
uncertainty measurements enhances the credibility of the proposed machine learning solution and
helps clinicians in the subsequent decision-making process.

Bayesian approaches such as Bayesian neural networks and Gaussian processes provide uncertainty
scores besides the predictive probabilities (Hiillermeier and Waegeman, 2021)). BNNs bring stochas-
ticity into the network by learning a distribution for each weight instead of a single point estimate
(Blundell et al., 2015)). A prior distribution is selected for each parameter and is represented by its
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mean and standard deviation (SD), increasing the number of trainable parameters in the Bayesian
neural network to twice the size of the equivalent deterministic architecture. Since exact inference is
computationally intractable for these networks, Variational Inference (Jordan et al.,|1999; [Wainwright
and Jordanl, 2008} |Graves, |2011; Blei et al.,2017)) is used to approximate the posterior on weights and
thus train the network (Filos et al.| [2019). A predictive distribution for the output can be generated by
drawing values for weights from the approximated posterior distribution (i.e., Monte Carlo sampling).

Monte-Carlo dropout has been introduced as a probabilistic approach that approximates Bayesian
inference in deep Gaussian processes (Gal and Ghahramani, [2016). MC-dropout extends the now
well-established practice of using Dropouts (Srivastava et al.,2014) during the training phase to
the test phase, bringing stochasticity to the network at inference time. MC-dropout has the same
number of parameters as the deterministic equivalent network and uses the same training procedure,
making it computationally more efficient than Bayesian neural networks. MC-dropout has revealed
promising results on image datasets (Filos et al.l 2019), but it has not been tested on other data types
like genomic data.

In this work, we aim to investigate predictive uncertainty estimation methods in a genomics appli-
cation. Experimental noise, incorrect dataset labels, out-of-distribution samples, class imbalance,
and presence of multiple motifs (i.e., multi-label setting) are the major reasons for uncertainty in
computational models in biology. Our goal is to find the most suitable strategy that well-reflects the
model’s uncertainty in its prediction without sacrificing predictive performance. Furthermore, these
uncertainty scores should be reliable for further investigating the source of uncertainty, as well as
selecting high-quality predictions, which in turn can be used in downstream analysis (Monti et al.,
2021).

To this end, we empirically compare the BNN approach and the MC-dropout in the task of predicting
RNA binding protein binding sites. This presents a novel application of uncertainty estimation
methods on multi-label imbalanced genomic data that goes beyond the standard image processing ap-
plications. However, we additionally use MNIST dataset as a benchmark to compare the performance
of both approaches in different scenarios common in a genomics application, namely imbalance data,
and scarce data. Specifically, the increased number of parameters and training through approximation
in BNNs results in the need for more computational resources and larger datasets. In applications
where data is scarce, BNNs might not perform well in their prediction and the quality of uncertainty
estimates. In our comparisons, we, therefore, assess the usability, performance, and agreement of the
uncertainty estimates provided by these two approaches in each application.

The remainder of this paper is organized as follows: In section 2, we describe the two classification
tasks and the two uncertainty estimation methods we examine in our experiments. Section 3, presents
our evaluations comparing the two methods and discussion on our observations. Finally, section 4
concludes this paper and presents insights into the future work.

2 Analysis of Uncertainty Estimation Approaches

To study the predictive uncertainty estimation methods in deep learning, we have compared a Bayesian
neural network with variational inference against a Monte Carlo-dropout network on two classification
tasks. We conduct experiments under different dataset settings to cover scenarios that are particularly
of interest in biological applications, namely imbalance data, scarce data, multi-label and single-label
classification. In this section, we describe our selected applications, datasets, and modeling choices.

2.1 MNIST Classification

The MNIST classification task (LeCun et al., [1998)) is a well-established benchmark in machine
learning. The dataset contains 70, 000 images of handwritten digits in grayscale. The dataset is
normalized and balanced, with each digit centered in a 28x28 pixel box. We run several experiments
on this multi-class classification problem as a benchmark for comparing MC-dropout and the BNN
in terms of the prediction performance and the estimated uncertainty. To further evaluate these
approaches, we repeat the experiments on an imbalanced version of the MNIST dataset with around
42,000 samples. The imbalanced version of the dataset is generated by sub-sampling from the
original dataset using to the following fractions: class 0: 0.5, class 1: 0.7, class 2: 0.8, class 3: 0.3,
class 4: 0.6, class 5: 0.8, class 6: 0.4, class 7: 0.2, class 8: 0.9 and class 9: 0.8 (see Figur.



2.2 RNA Binding Protein Site Classification

Proteins regulate different stages of gene expression through binding to specific locations in the
genome or the RNA. Proteins that bind to RNA can affect post-transcriptional processes such as
splicing, RNA localization, translation, and degradation (Gerstberger et al.,|2014). These RBPs are
selective of their target binding sites in terms of patterns in the sequence (i.e. sequence motifs) or the
RNA structure (i.e. structural motifs). Some RBPs share preferred sequence patterns for binding,
and some have distinct motifs. Identifying RBP binding preferences opens the door to understanding
their function in the downstream biological processes. Following (Ghanbari and Ohler| (2020), we
formulate the problem of RBP binding prediction as a multi-label classification task (i.e., to predict
the RBP class, given sections of the RNA sequence) and extend our experiments for comparing the
uncertainty estimation approaches for this problem. PAR-CLIP experiments provide high-resolution
binding site sequences for the RBP of interest (Hafner et al.,|2010). These bindings sites are small
RNA fragments of a typical size of a few dozen nucleotides, which contain sequence patterns of
typically 4-8 nucleotides in length. We select PAR-CLIP data (Mukherjee et al.| [2019)) for three
RBPs, namely MBNL1, PUM?2, and QKI, for this task. Our dataset is a combination of different
published PAR-CLIP datasets from the HEK293 cell-line that are processed uniformly through a
single pipeline (Corcoran et al.,|2011)). The dataset contains approximately 16, 500 samples in total.
It is imbalanced and includes approximately 475 multi-label samples, meaning one sequence can have
the binding motifs for multiple RBPs. For further analysis, we sub-sample from the larger classes
to build a balanced multi-label dataset containing about 4, 500 (including 460 multi-label) samples
(see FigurdI) and a balanced single-label version of the same dataset. We design our experiments
based on the work of |(Ghanbari and Ohler| (2020) and take their proposed deep learning model called
DeepRipe as our deterministic architecture for this task.

2.3 Experimental design

We design experiments to compare the prediction and uncertainty measurements of the two selected
approaches for estimating uncertainty, namely, the Bayesian neural network with variational inference
and the MC-dropout method. Our main interest is to study the applicability of these methods on
imbalanced or small datasets, which is often the case in biological applications. To this end, we
define two scenarios for MNIST classification task for balanced and imbalanced datasets, and
three scenarios for the RBP binding classification task: multi-label setting with balanced dataset,
multi-label setting with imbalanced dataset and finally single-label setting with balanced dataset. We
have implemented variations of the two probabilistic models, as well as deterministic models for
each scenario. Here, we describe the implementation details of these models.

The base model architecture for our experiments in both classification tasks is a simple neural network
with two convolutional layers, each followed by a max-pooling layer and a final fully-connected
layer. For MNIST, we use the softmax activation function in the last layer, whereas, in the RBP
classification, we use Sigmoid to address the multi-label setting.

In the deterministic baseline models, we use dropout for regularization. The BNN is built on a
similar architecture, but with Gaussian prior and posterior on the trainable parameters and mean-field
variational inference (Peterson and Anderson, [1987; |Blundell et al., |2015) as the training approach.
To speed up the training process, we use the Flipout Monte Carlo estimator that de-correlates the
gradients within each mini-batch (Wen et al 2018). Our MC-dropout networks have the same
architecture as the deterministic models, with the difference of activating the dropout in the final
layers at testing time.

The deterministic and MC-dropout networks are trained with a batch size of 128 for 30 epochs with
early stopping based on the validation loss with the patience set to 8. However, for the results of
the networks to be comparable, we needed to train the BNNs longer to reach similar accuracy to
MC-dropout’s. For all the experiments, we have used the Adam optimizer.

After training the probabilistic networks, we infer predictions on the test set for 1000 iterations,
building an output distribution for each test example through Monte Carlo sampling. The mean of the



distribution is regarded as the model prediction, and the standard deviation represents the model’s
uncertainty for the given test sample. We fix the test set across all models for each task and compare
the performance and uncertainties of the models.

Experiments are repeated with different random seeds, and the models are implemented in python
using the Tensorflow library (Abadi et al., [2015)).

3 Empirical Evaluation

This section presents our observations in our experiments with the Bayesian neural network trained
with variational inference and the MC-dropout network. As explained in the previous section, we
train different variations of each model and evaluate their predictive distributions for the test set.

3.1 Usability in different scenarios

We consider the accuracy of the deterministic model as our baseline for the performance of the
models in each scenario. The probabilistic models are then trained to reach similar performance, to
ensure comparability, and to avoid sacrificing accuracy when estimating uncertainty. As expected, we
observe that BNNs require a much longer training time and more computational resources in all
scenarios. Moreover, training BNNs for the multi-label setting in the RBP binding classification
task appeared unstable when repeated with different random seeds, with instances not converging
or getting stuck in local minima. However, the training process was improved when we reduced
the learning rate from 0.01 to 0.005 and allowed for longer patience for early stopping. We found
BNN:Ss to be sensitive to the choice of optimizer and hyper-parameters such as learning rate, whereas
training MC-dropout networks seemed robust against these choices. However, selecting the dropout
rate in MCD, and choosing which layers to have MC-dropout activated, can influence the performance.

3.2 Evaluating predictive performance

Following our experimental design, we compare methods with similar performance to the
deterministic model. All models show high predictive performance on both tasks. The models’
performance on the RBP prediction task are shown in Figure 2] With similar performance, BNNs
tend towards prediction values closer to zero or one compared to deterministic and MDC models for
both tasks (See Figure 3] for the RBP binding task). Furthermore, we calculated Pearson correlation
and Spearman correlation between the means of the predictive distributions to illustrate agreements
of the methods in their predictions. Figure ] shows these correlations between MCD and BNN on the
three scenarios for the RBP binding task.

3.3 Comparing uncertainty estimations

To assess the agreement and quality of the uncertainty measures provided by the two probabilistic
methods, we compare the standard deviations of the corresponding predictive distributions. Similar
to the means, we calculated Pearson correlation and Spearman correlation between the standard
deviations of the predictive distributions. Compared to the means, correlations of SDs are lower
across the models (see Figure 4| for RBP binidng task). This suggests that models with different
uncertainty estimation approaches produce different ranges of uncertainty scores. In particular, BNNs
seem to have a narrower range of uncertainty scores compared to MCD models. This observation
may be specific for our implementation choices for BNN models and needs to be verified in other
settings.

Additionally, we calculate Kendall’s tau test (Kendall, |1938)) between SDs of all models. Kendall
rank coefficient correlation (Kendall’s tau) measures the correspondence between ordinal data. The
test returns the tau value and the p-value. Kendall’s tau value ranges between —1 and 1, with values
close to 1 indicating strong agreement. Tests on both tasks yielded significant p-values, rejecting the



null hypothesis of no association between the uncertainties. In all of our scenarios, the tau values
are positive, however the agreement between uncertainty estimates of different MCD methods is
stronger than the agreement between MCD and BNN or different BNNs with each other (see Figure[5).

To further investigate the quality of uncertainty estimates provided by the two approaches, we
selected the most uncertain samples (i.e highest standard deviation) and analyzed commonalities and
differences between the BNN and MCD. Figure [6|and Figure [7]illustrate the overlap between the
most uncertain samples identified by BNN and MCD in the two classification tasks. Moreover, we
visualized the samples that are considered uncertain in one approach but not the other for the MNIST
task (Figurg8). From looking into the most uncertain samples per class, we find the uncertainty
estimations of the MCD to be of a higher quality and more similar to what we would consider an
ambiguous case. At this point, this is done only by visual explorations and not objectively quantified.

= 3000 =
S S

2000 4000

1000 2000

o 1 2 3 4 5 & 71 8 8 MBNLL PUM2 aa
Digit classes REP classes

(a) imbalanced MNIST dataset (b) imbalanced RBP dataset

Figure 1: Distribution of class sizes in the imbalanced version of the MNIST dataset and the
imbalanced version of the RBP dataset

4 Conclusion and Future Work

This paper presented our findings in experimenting with BNNs and MC-dropout for uncertainty
estimation in two classification tasks. We observed strong agreement between models’ predictions
and a high correlation between their uncertainty scores in different scenarios. This suggests that
MC-dropout can potentially be used as a computationally cheaper alternative to BNNs for uncertainty
estimation. Especially in applications where a trained deterministic model is already in place,
transition to a MC-dropout model requires less effort compared to BNN.

We want to extend experiments in this work to evaluate the quality of uncertainty scores with
out-of-distribution samples (e.g., random genome sequence) and to assess the use of Concrete

Dropout (Gal et al.,[2017).

In our future work, we would like to study the use of uncertainty estimates in several downstream
tasks, especially for model interpretation. Uncertainty estimation, coupled with interpretability
methods, can identify the source of predictive uncertainty from the model’s point of view. We want
to use interpretability methods to visualize the most uncertain samples for the RBP binding task to
get more insights on sequence motifs and RBP binding preferences. Comparing uncertain sequence
motifs to the known motifs for a given RBP can help us select a more suitable approach for uncertainty
estimation tailored to our application. Moreover, the uncertainty scores of individual samples can be
used in building population-level descriptive patterns (e.g., consensus motif for a family of RBPs),
which is an active area of research in the field of explainable Artificial Intelligence.
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Figure 2: Predictive performance of an instance of BNN and instance of MC-dropout (shown as
MCD) in the RBP binding task in three different scenarios: (a) balanced dataset in multi-label
classification setting, (b) imbalanced dataset in multi-label classification setting and (c) balanced
dataset in single-label classification setting. The metrics presented here for evaluating the performance
in each class are as follows: average precision (Ap), area under the receiver-operating characteristic
curve (AUROC) and finally the area under the precision-recall curve (AUPR). AUPR is preferred
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Figure 3: Comparison of the predicted values of the probabilistic and deterministic models in the RBP
binding tasks in three different scenarios: (a) balanced dataset in multi-label classification setting,
(b) imbalanced dataset in multi-label classification setting and (c) balanced dataset in single-label
classification setting. The left column plots the predictions of the deterministic model against BNN
for each scenario. Similarly, the middle column plots predictions of the deterministic model against

Bayesian vs MC-dropout

10 ’
o8
o6
as
0z
00 et
W M B 03 0 T
weo
10 -

BN

B

MCD, and the column on the right shows the same for BNN against MCD.



095
096 .
034
H . H e ° . .
© 093 . T 094
£ . . £ .
5 s e . .
c0924® c
8 e e 2092 .
= . =
® 09l . T
£ . * W £ «® . .
8 S
030 - 090 .
.
089 s @  spearman comelation & spearman corelation
¢ pearsan correlation 088 ] pearson correlation
00 25 50 75 100 125 150 15 00 25 wo 15 150 175
Different experiments: BNN vs MCD Different experiments: BNN vs MCD
.« e .
.
e®,00® o 0 .. . .
07 . 08 - .. . .
. . .
o . . " . .
& 06 & 07 s
7 se® 7 .
s . S
£ 05 208
gos Sos
03 ®  spearman correlation 04 ®  spearman corelation
pearsan correlation pearson correlation
00 25 50 75 100 115 150 175 0o 25 50 75 10 125 150 175

Different experiments: BNN vs MCD

(a) balanced multi-label

Different experiments: BNN vs MCD

(b) imbalanced multi-label

Correlation of means

Correlation of SDs

. . * . -
® spearman corelation
pearson correlation

25 50 75 100 125 150 175
Different experiments: BNN vs MCD

® spearman correlation
pearson correlation

00

25 50 75 100 125 150 175
Different experiments: BNN vs MCD

(c) balanced single-label

Figure 4: Comparing BNN models’ predictions and uncertainty scores against MCD models’ in
the RBP binding tasks in three different scenarios: (a) balanced dataset in multi-label classification
setting, (b) imbalanced dataset in multi-label classification setting and (c) balanced dataset in single-
label classification setting. This is illustrated by showing the Pearson and Spearman correlations
between the means in the first row, and between the SDs in the second row, for each experiment (i.e.
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Figure 5: Kendall’s tau value for measuring correlation between the uncertainty estimates of BNN
and MCD in the RBP binding tasks in three different scenarios: (a) balanced dataset in multi-label
classification setting, (b) imbalanced dataset in multi-label classification setting and (c) balanced
dataset in single-label classification setting. Kendall’s tau values range from —1 to 1, with 1 showing
strong agreement and —1 strong disagreement of the two ordinal datasets.
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Figure 6: Comparing the number of samples that are considered uncertain by both of the BNN and
MCD models in the RBP binding tasks in three different scenarios: (a) balanced dataset in multi-label
classification setting, (b) imbalanced dataset in multi-label classification setting and (c) balanced
dataset in single-label classification setting. This is illustrated in the first row by the count of common
uncertain samples between top 100 most uncertain samples for each class as indicated by the BNN
compared to of those indicated by MCD. Similarly, the count of common uncertain samples in top 50
most uncertain samples are shown in the second row, and the top 10% most uncertain samples in the

third row.
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Figure 7: Comparing the number of samples that are considered uncertain by both of the BNN and
MCD models in the MNIST tasks in two different scenarios: (a) balanced dataset and (b) imbalanced
dataset. This is illustrated in the first row by the count of common uncertain samples between top
100 most uncertain samples for each class as indicated by the BNN compared to of those indicated
by MCD. Similarly, the count of common uncertain samples in top 50 most uncertain samples are
shown in the second row, and the top 10% most uncertain samples in the third row.
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Figure 8: Comparing samples that are considered uncertain by only one of the BNN or MCD models
in the MNIST task with balanced dataset. This is illustrated as follow: (a) shows 10 samples from
each class, that are among the top 100 most uncertain samples based on uncertainty scores provided by
BNN model, but are not among the 100 most uncertain of the corresponding MCD model. (b) shows
10 samples from each class, that are among the top 100 most uncertain samples based on uncertainty
scores provided by MCD model, but are not among the 100 most uncertain of the corresponding
BNN model.
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