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Abstract

In this paper, we present preliminary results on improving out-of-domain
weather prediction and uncertainty estimation as part of the Shifts Challenge
on Robustness and Uncertainty under Real-World Distributional
Shift challenge. We find that by leveraging a mixture of experts in conjunction
with an advanced data augmentation technique borrowed from the computer vision
domain, in conjunction with robust post-hoc calibration of predictive uncertainties,
we can potentially achieve more accurate and better-calibrated results with deep
neural networks than with boosted tree models for tabular data. We quantify our
predictions using several metrics and propose several future lines of inquiry and
experimentation to boost performance.

1 Introduction

Machine learning is increasingly being applied across several domains, finding ever new applications
in the real world. A key assumption held by most of these models is that training and test data are
IID; this assumption rarely holds up to scrutiny in the real-world, where the models must process
unseen and unpredictable distributions. This leads to several machine learning models providing
unsatisfactory performance in production. The development of models that are robust to distributional
shifts, therefore, is an important goal to work towards.

A prime exemplar for a field where distributional shifts are abundant over time is weather prediction.
Weather prediction requires that models provide consistently satisfactory performance across both as
a function of space (latitude, longitude, climate) and time (of day, month, year). While there have
been several works in the field of weather prediction, the Shifts Challenge on Robustness
and Uncertainty under Real-World Distributional Shift presents a unique opportunity
to develop and apply models that are robust to such effects and also yield sensible uncertainty
estimates. We present here an empirical study on the effects of regularization, calibration, and data
augmentation in a multi-domain training environment.

Our main contributions are thus. First, we leverage a mixture density network (MDN, 3; 6; 11; 12)
with β−likelihoods and demonstrate competitive performance relative to two commonly used boosted-
tree models, NGBoost (8) and CatBoost (21). Second, we demonstrate the necessity of regularization
while training the MDN. Specifically, we use moment exchange (MoEx, 17), a data augmentation
method originally developed for use in computer vision (CV), to regularize our MDN successfully.
Third, we demonstrate the necessity of calibrating predictions, and utilize a state-of-the-art post-hoc
calibration method (CRUDE, 26) to that end. Fourth, we illustrate that the inverse variance weighing
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Figure 1: Impact of varying the probability parameter p in MoEx. p is the probability that a given
sample will be augmented. Left: Negative log likelihood of robust, post-hoc predictions on TEST
vs. p and mean absolute error. Right: Mean absolute error instead of NLL. For both plots, lower is
better. We denote by dashed orange and blue lines the respective predicted metrics from NGBoost
and CatBoost (see last lines in Tables 2 and 3, respectively).

method, commonly used to combine predictions from members of an ensemble, improves predicted
means but results in poorly calibrated uncertainties. Finally, we demonstrate, for the first time with a
tabular dataset, the improvement in predicted negative log likelihood (NLL) resulting from robust,
domain-aware calibration (23).

2 Data

We employ the Weather Prediction dataset developed by Yandex Research for the Shifts Chal-
lenge. This dataset comprises several meteorological features from three major global weather
prediction models, as well as air temperatures 2 metres above ground (fact_temperature), for a
diverse set of latitudes and longitudes. The goal of this competition is to predict air temperature at 2
meters above ground, given all available weather station measurements and multiple weather forecast
model predictions. While the training data has information about location on earth and the timestamp
when predictions from the 3 global forecasting systems were made, these meta-data are assumed to
be missing for the test set.

There are two specific set of feature categories that make up this dataset: weather-related features and
meteorological features. Weather related features consist of sun evaluation at the current location,
climate values of temperature, pressure and topography. Meteorological parameters are details
based on pressure and surface level data from the weather prediction models. There are five climate
types associated with the data: Tropical, Dry, Mild Temperate, Snow and Polar. The data are split
into training, development and evaluation sets based on the climate and time of year, in order to
provide a clear distributional shift in the weather data. The development set is first sub-divided into
ID-development and OoD-development (in-distribution an out of distribution, respectively), and is
designed to simulate the evaluation set. In this paper, we only use the first two datasets as these
were the only ones released during the first phase of the competition. The training data consists of
features with climate types as Tropical, Dry and Mild Temperature. This data is recorded from the
1st of September 2018, to the 8th of April, 2019. dev-ID has the same climate types and time of year
(first and last thirds of the year) as the training data, whereas dev-OoD consists of samples only with
the climate type Snow, and during the middle third of the year. The evaluation dataset, of course,
has been shifted based on climate and time. It consists of features with Snow and Polar climate
types, recorded from the 14th May, 2019 to the 8th of July,2019.1 The training, dev-ID and dev-OoD
datasets show a clear distributional shift, presenting a challenge to develop models robust to these
shifts and competent at generalisation to OoD data in the real world.

1We mention this only for sake of exposition but remind the reader that we do not actually use the evaluation
dataset in this work.
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3 Method

1. We divide the given training dataset T_ALL with ∼3.1 million samples into six disjoint
datasets (T_E1, T_E2, T_E3, T_E4, T_E5, and T_E6) based on climate and week_of_year.
We use the ID part of the development dataset as our validation data V_ALL, and the OoD
part as the test set TEST. We divide the former it into V_E1, V_E2, V_E3, V_E4, V_E5, and
V_E6. The Es stand for environment, to highlight the fact that each of the six datasets come
from a different domain/environment. From each of these 14 datasets (7 training and 7
validation), as well as from TEST, we drop the first six columns as these are to be treated as
meta-data and not expected to be present in the final evaluation dataset.

2. We now have seven unique sets of training-validation splits upon which we we train separate
models. We scale each of these separately. We standardize the input features (to mean of
0 and standard deviation of 1) of the training datasets (T_E1 through T_E6, and T_ALL),
and then re-scale them to lie between 0 and 1. We use the derived statistics to re-scale
V_E1 through V_E6, and V_ALL as well as the respective copies of the test set TEST. We
similarly normalize the six output columns of fact_temperature, and then follow this up
by min-max scaling them such that the training set values lie between 0.1 and 0.9. This is
because of our models, the MDN (visualized in Figure 2) uses a β-likelihood for the output
variable, which requires it to lie between 0 and 1. We leave a little buffer zone of 0.1 on
each size to allow for OoD predictions.

3. We choose the hyperparameters for NGBoost2 and CatBoost3 by trial-and-error. We use
these two models as they allow to derive both aleatoric and epistemic uncertainties easily.
For each type of model, we create 10 models with different seeds, and average the predictions
from each such that the final mean on a test sample is the mean of the 10 predicted means,
the final aleatoric uncertainty is the mean of the 10 predicted aleatoric uncertainties, and the
final epistemic uncertainty is the variance of the 10 predicted means.

4. For the MDN, we use 5 mixture components, negative log-likelihood (NLL) as the loss
function, LAMB (25) as the optimizer, and a batch size of 512. We use a cosine decay
learning rate scheduler (22) varying between 1e− 3 and 1e− 4, with 2 cycles each of length
15 epochs. We save and revert to model weights which result in the lowest loss values on
the respective validation sets.

5. For the MDN, we leverage moment exchange (MoEx, 17) to augment training data online.
MoEx uses two hyperparameters: p, the probability that a given sample will be augmented,
and λ, the weight of a sample in a binary mixture of itself with another randomly selected
sample (see original paper for details). We pick p = 0.20 and draw lambda from a peaked
β distribution, such that it is more often than note close to 0.5 (λ ∼ β(100, 100)). In
addition we use gradient centralization (GC, 24) and stochastic weight averaging (SWA, 15)
to smooth the loss landscape and improve generalization.

6. Next, we combine the six sets of predictions from each of the individual training sets (T_E1
through T_E6) by inverse variance scaling.

7. We post-hoc calibrate all predicted aleatoric uncertainties using CRUDE (26), a state-of-the-
art method for regression problems.

8. When the training set is T_ALL, we also calibrate the predicted aleatoric uncertainties on
a per-domain basis (23). Specifically, after training a model on T_ALL, instead of using
V_ALL as the calibration set, we instead use V_E1 through V_E6 as individual calibration
sets. For each of the six runs, we store the Gaussian NLL (7) derived from the calibrated
aleatoric uncertainties on the respective validation/calibration sets, then find the V_Ei with
the minimum NLL – this is the calibration set with respect to which post-hoc calibration
will result in maximum gain.

9. Finally, to test the sensitivity of MDN with MoEx on the probability of augmentation p, we
run experiments with p = 0.05, 0.40, 0.60, 0.80, 1.00; see Figure 1.

2n_estimators=500, max_depth=12, colsample_by_node=0.3, subsample=0.8, eta=0.1,
num_parallel_trees=3, min_child_weight=40, gamma=10, reg_lambda=5, reg_alpha=5,
distribution=‘normal’.

3iterations=500, l2_leaf_reg=10, border_count=254, depth=10, learning_rate=0.03,
use_best_model=True, loss=‘RMSEWithUncertainty’.

3



Table 1: Relative performance of MDN+MoEx on the OoD test set (TEST), when trained individually
on training datasets from the six environments (T_E1 through T_E6), when ensembling these results
using inverse variance scaling, and when trianing on the combined dataset T_ALL. The first two lines
in each field correspond to raw and calibrated predictions. For the last cell with T_ALL, the last
line corresponds to robustly calibrated predictions. ‘M.T.’ stands for mild temperate. For ‘Inverse
Variance’, the second row is not the results of calibration via CRUDE, but the inverse variance
weighted means of the means and standard deviations from the calibrated predictions from the six
domains (i.e., a weighted average of the second rows in the top six cells).

Domain Dataset MAE (↓) RMSE (↓) BE (| ↓ |) IS (| ↓ |) ACE (| ↓ |) NLL (↓)
M.T.
Early T_E1 2.32 3.11 -0.40 0.04 -0.23 3.00

2.32 3.11 -0.42 0.05 -0.29 3.46

M.T.
Late T_E2 2.02 2.69 -0.44 0.04 -0.25 3.09

2.03 2.70 -0.49 0.04 -0.23 2.97

Dry
Early T_E3 2.38 3.28 0.51 0.04 -0.30 3.6

2.38 3.27 0.50 0.03 -0.24 3.1

Dry
Late T_E4 2.05 2.99 -0.01 0.03 -0.19 2.80

2.06 3.08 0.19 0.03 -0.17 2.69

Tropical
Early T_E5 3.06 3.90 1.87 0.06 -0.21 3.47

3.09 3.93 1.93 0.07 -0.30 4.84

Tropical
Late T_E6 2.66 3.48 0.21 0.05 -0.26 3.61

2.65 3.47 0.13 0.06 -0.30 4.08

Inverse
Variance

1.81 2.41 0.14 0.04 -0.44 7.39
1.85 2.48 0.25 0.05 -0.45 8.50

All T_ALL
1.74 2.33 -0.15 0.03 -0.08 2.26
1.74 2.33 -0.12 0.03 -0.18 2.50
1.73 2.33 0.12 0.03 -0.17 2.48

For tracking our experiments and logging all metrics, we leverage Weights & Biases (2)4.

4 Results

We compare all predictions using six metrics: mean absolute error (MAE), root mean squared error
(RMSE), bias error (BE), interval sharpness (IS, 13; 4; 11; 12), average calibration error (ACE
13; 4; 11; 12), and Gaussian negative log likelihood (NLL, 7). For experiments with MDN as the
model, we show results in Table 1. With NGBoost and CatBoost as the models, we show results in
Tables 2 and 3, respectively. A few observations become apparent:

1. The variance in metrics when trained on individual domains is quite high. In a real-life
scenario of domain generalization, when it is difficult or even impossible to say which one
of the training environments at hand might be the most similar to a given test environment,
such high variance is undesirable.

2. While inverse variance ensembling – one of the most common methods of ensembling
predictions – might improve deterministic metrics (MAE, RMSE, MAE), they invariably
deteriorate the probabilistic ones (ACE and NLL).

3. In most cases, calibration improves predictions. In the handful of cases where it results in
worse performance (T_E5 and T_E6 cells in Tables 1, 2 and 3, and ‘inverse variance’ cell in
Table 1), this can be attributed to the domain shift between the source and target domains.
T_E5 and T_E6 datasets are from the tropical environment and are ‘far away’, semantically,
from T_TEST which is in snowy climes. Consequently, post-hoc calibrating predictions
from datasets that are already poor representatives of a test set does more harm than good.

4https://wandb.ai/site
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4. From Table 4, first rows of all cells, we see that the MDN’s performance is mostly agnostic
to the choice of the MoEx hyperparameter p (judging by say MAE and NLL), except for high
values of p (see the p = 1.00 cell). However, calibratiion – even more so, robust calibration
– removes, to a large extent, the variance in performance, a desirable quality in domain
generalization (see second and third rows of all cells). This strengthens further our case that
both calibration, and when in a multi-environment setting, robust calibration, should be an
indispensable tool in a researcher’s toolkit when making probabilistic predictions.

5. From Figure 1 we make two observations. First is that while (robustly calibrated) MAE with
the MDN is lower than the (robustly calibrated) MAE from at all values of p, the opposite is
true for NLL; we relegate further exploration of this to future work. Second, results based
on the dataset under consideration suggest that p = 1 is a good estimate for the MoEx
hyperparameter, provided it that predictions are followed by robust calibration.

5 Future Work

This article represents only intermediate results based on the training and development sets available
at the time of writing. As the immediate next step we will make predictions on the recently open-
sourced evaluation dataset, and compare our results with those of the winners of the competition. We
will also experiment with other neural network and boosted tree architectures, such as deep evidential
regression (19), XGBoost (5), and LightGBM (16). We will experiment with methods to ensemble
predictions from different architectures; recent work has shown that such a hybrid ensemble can
provide superior predictions than either machine learning- or deep learning-based models alone (14).
For a fairer comparison, we will also extensively optimize the hyperparameters of all models under
consideration. We will experiment with other domains of training besides supervised, such as domain
adaptation (10), imbalanced risk minimization (IRM, 1), and feature calibration (20)
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A Tables

Table 2: Same as Table 1, but using NGBoost as the predictor.
Domain Dataset MAE (↓) RMSE (↓) BE (| ↓ |) IS (| ↓ |) ACE (| ↓ |) NLL (↓)
M.T.
Early T_E1 2.09 2.77 -0.90 0.03 -0.06 2.35

2.01 2.68 -0.66 0.03 -0.00 2.31

M.T.
Late T_E2 1.92 2.57 -0.62 0.03 -0.06 2.29

1.88 2.52 -0.46 0.03 -0.02 2.25

Dry
Early T_E3 2.12 2.85 -0.80 0.03 -0.03 2.41

2.08 2.80 -0.64 0.03 0.02 2.38

Dry
Late T_E4 1.96 2.61 -0.38 0.03 -0.03 2.31

1.93 2.58 -0.20 0.03 0.01 2.29

Tropical
Early T_E5 4.31 5.56 3.57 0.11 -0.17 2.89

4.51 5.82 3.84 0.11 -0.16 2.91

Tropical
Late T_E6 4.44 5.65 3.72 0.11 -0.08 2.89

4.60 5.85 3.92 0.11 -0.02 2.91

Inverse
Variance

1.85 2.49 -0.20 0.04 -0.35 3.72
1.84 2.48 -0.04 0.04 -0.32 3.41

All T_ALL
1.81 2.44 -0.28 0.03 -0.02 2.23
1.79 2.42 -0.09 0.03 0.01 2.22
1.80 2.46 0.51 0.03 0.00 2.24

Table 3: Same as Table 1, but using CatBoost as the predictor.
Domain Dataset MAE (↓) RMSE (↓) BE (| ↓ |) IS (| ↓ |) ACE (| ↓ |) NLL (↓)
M.T.
Early T_E1 1.74 2.34 -0.19 0.03 -0.02 2.21

1.73 2.33 -0.05 0.03 -0.01 2.21

M.T.
Late T_E2 1.83 2.47 -0.30 0.03 -0.04 2.24

1.81 2.45 -0.17 0.03 -0.04 2.24

Dry
Early T_E3 1.80 2.40 -0.19 0.03 -0.03 2.27

1.79 2.39 -0.12 0.03 -0.01 2.25

Dry
Late T_E4 1.87 2.51 -0.48 0.03 -0.05 2.29

1.85 2.49 -0.36 0.03 -0.03 2.27

Tropical
Early T_E5 2.34 3.13 0.57 0.08 -0.24 3.21

2.36 3.18 0.77 0.08 -0.21 3.09

Tropical
Late T_E6 2.22 2.97 0.28 0.07 -0.22 3.04

2.24 3.01 0.54 0.07 -0.20 2.99

Inverse
Variance

1.83 2.45 0.01 0.05 -0.41 5.59
1.82 2.44 0.16 0.05 -0.40 5.30

All T_ALL
1.88 2.56 -0.41 0.03 -0.02 2.24
1.86 2.53 -0.27 0.03 -0.03 2.24
1.85 2.52 -0.19 0.03 -0.02 2.23
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Table 4: Performance of the MDN with MoEx augmentation at different values of the probability
parameter p. We assume a λ ∼ 0.5 throughout. Training set is T_ALL, validation set is V_ALL. In each
cell, the first row contains metrics from raw predictions on TEST, second row from CRUDE-calibrated
predictions using V_ALL as the calibration set, and the final row contains metrics when we leverage
robust (per-domain) calibration as described in Section 3.

Probability (p) MAE (↓) RMSE (↓) BE (| ↓ |) IS (| ↓ |) ACE (| ↓ |) NLL (↓)

0.05
1.74 2.33 -0.15 0.03 -0.08 2.26
1.74 2.33 -0.12 0.03 -0.18 2.50
1.73 2.33 0.12 0.03 -0.17 2.48

0.20
1.72 2.29 -0.21 0.03 -0.10 2.27
1.71 2.28 -0.11 0.03 -0.14 2.37
1.70 2.29 0.16 0.03 -0.15 2.41

0.40
1.78 2.36 -0.32 0.03 -0.13 2.40
1.76 2.35 -0.21 0.03 -0.17 2.51
1.75 2.34 -0.12 0.03 -0.19 2.59

0.60
1.76 2.35 -0.07 0.03 -0.11 2.34
1.76 2.35 -0.12 0.03 -0.16 2.45
1.75 2.35 0.02 0.03 -0.17 2.52

0.80
1.73 2.33 -0.07 0.02 -0.10 2.30
1.73 2.33 0.07 0.03 -0.15 2.41
1.73 2.34 0.10 0.03 -0.15 2.43

1.00
1.79 2.38 -0.51 0.03 -0.06 2.27
1.75 2.35 -0.31 0.03 -0.13 2.37
1.73 2.33 -0.15 0.03 -0.12 2.36

B Figures

Figure 2: Architecture of the mixture density network (MDN, 3; 6). PONO is the positional
normalization layer (18), and the use of LeakyGate is inspired by (9). We model the output variable
fact_temperature conditioned on the input variables using a mixture of 5 β distributions.
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