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Abstract

Existing approximate inference techniques produce predictive distributions that
are quite distinct from the predictive distribution of the gold-standard Hamilto-
nian Monte Carlo. In this work, we bring the predictive distribution produced by
deep ensembles more closer to the Hamiltonian Monte Carlo predictive distribu-
tion by increasing the diversity within the ensembles. The proposed approach out-
performs the existing approximate inference methods and is also currently ranked
the highest in the Approximate Inference competition at NeurIPS 2021.

1 Introduction

The synthesis of deep neural networks and probabilistic modelling forms a promising path to obtain
calibrated uncertainty estimates, which is vital in many real-world decision-making applications.
The wrinkle is, however, the exact posterior for all modern neural networks is analytically and
computationally intractable. A plethora of approximate methods have thus been developed in the
last few years, allowing Bayesian deep learning to be applied at scale [see e.g. Welling and Teh,
2011, Blundell et al., 2015, Gal and Ghahramani, 2016, Lakshminarayanan et al., 2017, Osawa
et al., 2019]. However, the quality of these approximations has recently come under the spotlight.
For example, these methods can perform poorly in uncertainty-driven sequential decision making
[Riquelme et al., 2018] or when dealing with out-of-distributions inputs [Ovadia et al., 2019]. More
crucially, Izmailov et al. [2021] show that the predictive distributions learnt by these methods are
dissimilar to that produced by the gold-standard Hamiltonian Monte Carlo (HMC) [Neal, 2011], a
non-scalable method that asymptotically samples from the true posterior.

In this work, we revisit the Bayesian model averaging approximation using deep ensembles [Laksh-
minarayanan et al., 2017], and proposes two simple, yet effective modifications: (i) using different
optimisers for ensemble members, and (ii) combining predictions from multiple network architec-
tures on the same dataset. The proposed approach is simple to use, just like deep ensembles, but
yields predictive distributions that resemble the HMC predictive. This is highlighted by a strong
improvement over the baseline methods along with currently the highest ranked scores in the Ap-
proximate Inference in Bayesian Deep Learning competition at NeurIPS 2021.

2 Proposed approach

We start off with formalising the target predictive distribution as a Bayesian model average (BMA)
and its approximation using deep ensembles. The target distribution can be written as:

p(ylx, D) = / p(ylz, w)p(w|D) (1)

w

where D is the training dataset and w is the parameters in a neural network. Wilson and Izmailov
[2020] argue that deep ensembles [Lakshminarayanan et al., 2017] is a valid BMA approximation,

Preprint. Under review.



in the same vein as other approximate Bayesian inference methods. In particular, deep ensembles
trains a single neural network several times with different initial weights. Because of a distinct
initialisation and stochasticity in the training procedure, each member within the ensemble can end
up in a different basin of the posterior. The weights sampled from these distinct basins tend to give
diverse predictions, thus yielding an arguably better BMA approximation than other single-mode
methods [Fort et al., 2020, Wilson and Izmailov, 2020].

In practice, the optimisation procedure of deep ensembles involves using the same optimisation
algorithm to train each member. However, Zhou et al. [2020] show that optimisation algorithms
such as SGD and Adam have an implicit attraction towards certain basins with specific geometric
properties. For example, SGD has an affinity towards flat basins, while Adam has a bias towards
sharper basins. This means that if all members of the ensemble are trained with the same optimizer,
we may miss converging on some basins because of their geometric properties. This would prevent
the BMA approximation to bias away from certain regions. Even though flat regions may support
better generalisation and occupy a larger posterior volume, it is worth considering other basins in
the BMA marginalisation. To this end, we explore using different optimisation algorithms within
the ensemble. Similar to deep ensembles, we train each network in the ensemble with a different
initialisation of the weights. However, instead of training each network with the same optimiser like
in deep ensembles, we train half of the networks with SGD and the other half with Adam.

Note that BMA in eq. (1) can be extended, in principle, to combine predictions from multiple mod-
els,

Pl D) = 3 [ plula.we M)p(wM.D)p(MID), @

MeM

that is BMA linearly mixes the predictions from multiple models, each weighted by its posterior
probability. Even though this seems appealing, there are several subtleties. First, eq. (2) can be
pathological when considered models do not capture mutually exclusive and exhaustive possibilities
about how the data was generated [Minka, 2002]. Second, it is intractable to consider all models
or network architectures, so we have to resort to an approximate using a finite number. And, third,
even when the model space is small, getting the posterior probability for each model is intractable.
Nevertheless, we may still wish to combine the predictions from multiple models. In this work,
we simply train and combine predictions from several networks with well-known architectures for
a given dataset. In the same spirit as deep ensembles having several initialisations or optimisers,
including different architectures in the BMA tends to give more functional diversity. As we show
in our experiments, this increased functional diversity brings the predictive distribution much more
closer to the exhaustive HMC in comparison to the existing methods.

3 Experiments

To evaluate our approach, we follow the evaluation framework used by Izmailov et al. [2021]. We
use the total variation and agreement to measure how close the predictive distribution of a method
is to that of HMC. The total variation (lower is better) compares the probabilities for each of the
classes between the predictive distribution p and the true distribution g. Total variation is defined as:

*Z Z|p = jla) — aly = jlzs) 3)

where z; is the ith data point and n is the total number of data points. Agreement (higher is better)
computes the similarity of top-1 predictions of p and g and is defined as

- ZI argmax p(y = jlz;) = arg maXQ(y = jlzi)] “)
=1 J

where I is the indicator function.

Within our ensemble, we include equal number of networks trained using both SGD and Adam. To
take into account predictions from different models, our ensemble also consists of equal number of



Table 1: Agreement and total variation of the predictive distribution obtained by our approach and
existing approximate inference methods with HMC on CIFAR-10. The HMC reference distribution
here represents the agreement and variation of a single HMC chain with an ensemble of two inde-
pendent HMC chains. Our proposed approach, which includes varying both the optimizer and the
network architecture in the ensemble (Opt and Model Ens), outperforms all the existing baseline
methods. For comparison, we also include an ensemble in which we only vary the optimizer and
leave the architecture fixed (Opt only Ens).

Metric HMC Opt and Opt only Deep MVFI SGLD SGHMC SGHMC
(Refer- Model Ens Ens CLR CLR-
ence) Ens Prec

Acc 89.64 90.19 89.56 88.49 86.45 89.32 89.63 87.46

Agreem  94.01 93.79 92.35 91.52 88.75 91.54 92.67 90.96

Total Var  0.074 0.087 0.102 0.115 0.136 0.110 0.099 0.111

Resnet-20 [He et al., 2016] and Lenet-5 models [Lecun et al., 1998], each trained with both SGD
and Adam. The ensemble consists of 16 networks in total. We report the results on CIFAR-10 in
Table 1. We use the baseline results of the existing methods provided by Izmailov et al. [2021] for
comparison.

Our proposed approach outperforms all the existing methods in terms of both total variance and
agreement with the HMC distribution. It also has a higher final accuracy than a single chain HMC
as well as all other methods. It is also worth noting that our ensemble approach is relatively much
more efficient as it only consists of 16 networks in comparison to the ensemble of 50 networks used
by Izmailov et al. [2021], reported as deep ensembles in table 1. In addition to CIFAR-10, we also
test our approach on IMDB dataset, where we use an ensemble of Adam and RMSProp with CNN-
LSTM and Bi-directional LSTM. The agreement and total variance with HMC we achieve are also
currently ranked the highest in the Approximate Inference Competition.

4 Summary and future work

Using multiple optimisers and models within a deep ensemble enables greater functional diversity,
leading to promising results on two large scale approximate inference settings. There is still much
work to be done on understanding these modifications and their impact on other downstream appli-
cations such as distribution shift detection [Ovadia et al., 2019].

Deep ensembles [Lakshminarayanan et al., 2017] can be made efficient by sharing parameters be-
tween ensemble members [Wen et al., 2020]. In addition, the functional diversity can be further im-
proved by using random hyperparameters for different members [Wenzel et al., 2020]. The proposed
approach here is compatible with these existing methods and we plan to explore the combination of
these in future work.
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