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Abstract

We consider the problem of the stability of saliency-based explanations of Neural
Network predictions under adversarial attacks in a classification task. Saliency
interpretations of deterministic Neural Networks are remarkably brittle even when
the attacks fail, i.e. for attacks that do not change the classification label. We
empirically show that interpretations provided by Bayesian Neural Networks are
considerably more stable under adversarial perturbations of the inputs and even
under direct attacks to the explanations. By leveraging recent results, we also
provide a theoretical explanation of this result in terms of the geometry of the
data manifold. Additionally, we discuss the stability of the interpretations of high
level representations of the inputs in the internal layers of a Network. Our results
demonstrate that Bayesian methods, in addition to be more robust to adversarial
attacks, have the potential to provide more stable and interpretable assessments of
Neural Network predictions.

Introduction Deep Neural Networks (DNN5s) are the core engine of the modern Al revolution.
Their universal approximation capabilities, coupled with advances in hardware and training algo-
rithms, have resulted in remarkably strong predictive performance on a variety of applications.
However, the story of DNNs is tempered with a number of potentially very serious drawbacks
which are somehow the natural flip side of dealing with extremely flexible and complex models.
The first such drawback is the black box nature of DNNSs: their expressivity and training on large
data sets empirically results in very strong predictive power, but in general it does not provide any
intuition about the possible explanations underlying the decisions. A second major drawback of
DNN predictions is their vulnerability to adversarial attacks: empirically, it has been observed in
many applications that well chosen infinitesimal changes in inputs can produce catastrophic changes
in output [8]], leading to paradoxical classifications and a clear problem in any application to safety
critical systems.

In this paper, we argue theoretically and empirically that these two problems are interlinked, and that
therefore solutions that ameliorate resilience against adversarial attacks will also lead to more stable
and reliable interpretations. We work within the framework of saliency explanations, which attempt
to interpret post-hoc DNN decisions by apportioning a relevance score to each input feature for each



data point. Specifically, we use the popular Layer-wise Relevance Propagation (LRP) [3]], whose
saliency interpretations are well known to be unstable under perturbations of the inputs [7, |9, |1} 16].
Our results confirm that the LRP robustness of deterministic DNN predictions is remarkably low
even when the adversarial attack fail to change the overall classification of the data point, i.e. that
LRP interpretations are less robust than actual classifications. Recently, [4] suggested that a Bayesian
treatment might ameliorate these stability problems. Considerations on the geometry of LRP [2]
suggest that the observed lack of robustness might be imputable to large gradients of the prediction
function in directions orthogonal to the data manifold. We expand on such a point of view, integrating
it with a theoretical analysis in a suitably defined large-data limit [5,[13} 16 [11]], and leveraging recent
results from [5] about the robustness of BNNs to gradient based adversarial attacks. Specifically,
we prove that Bayesian training of the DNNSs in the large-data and overparametrized limit induces a
regularizing effect which naturally builds robust explanations. We empirically validate this claim in a
variety of settings.

Methodology We consider the stability of saliency interpretations under targeted adversarial attacks
that aim to change the classification under perturbations of the input. We introduce a novel notion of
k-LRP robustness of relevance heatmaps to adversarial attacks and use this measure to assess how
adversarial perturbations of the inputs affect the explanations.

Definition. Ler x be an image with relevance heatmap R(x,w) and & an adversarial perturbation
with relevance heatmap R(Z,w). Let Top, (R) denote the pixel indexes corresponding to the top k
percent most relevant pixels in the absolute value of a heatmap R. The k-LRP robustness of = w.r.t.
the attack T is

k-LRP(x,Z,w) := |Top,, (R(z,w)) N Top, (R(Z,w))|/k. (1)

In other words, the Top, (R) pixels have a strong positive or negative impact on classification and
k-LRP(z, Z,w) is the fraction of common most relevant pixels for « and Z in the top k%. We
analyse the behaviour of LRP representations in the internal layers of the network, thus we also
extend the computation of LRP heatmaps to any feature representation of the input x at a learnable
layer [ € N and denote it as k-LRP(z, &, w,[). The notion of LRP robustness can be naturally
generalised to the Bayesian setting using the concept of Bayesian model averaging. Hence, the LRP
heatmap of a BNN is computed as the average of all the deterministic heatmaps from the ensemble:
Ep(w|p) [k-LRP(z, &, w,1)].

To better conceptualise the impact of a Bayesian treatment on LRP robustness, it is convenient
to consider the thermodynamic limit of infinite data and infinite expressivity of the network, as
formalised in [6, [L1 [13]. The main ingredients are the data manifold M p, a piecewise smooth
submanifold of the input space where the data lie, and the true input/output function, which is
assumed to be smooth and hence representable through an infinitely wide DNN. Because the data
manifold is assumed to be piecewise smooth, it is possible to define a tangent space to the data

manifold almost everywhere, and therefore to define two operators Vj and VL'C which define the
gradient along the normal and tangent directions to the data manifold M p at a point x of a function
defined over the whole input space. In the thermodynamic limit, the DNN function f(z, w) coincides
with the true function everywhere on the data manifold, and therefore the tangent gradient of the
loss function is identically zero. The normal gradient of the loss, however, is unconstrained by the
data, and, particularly in a high dimensional setting, might achieve very high values along certain
directions, creating therefore weaknesses that may be exploited by an adversarial attacker. The
tangent components of the gradient of the prediction function will coincide with the gradients of the
true function, and therefore represent directions of true sensitivity of the decision function which
are correctly recognised as relevant. However, such directions might be confounded or dwarfed by
normal gradient components, which create directions of apparent relevance which, by construction,
are targeted by gradient-based adversarial attacks. In the following Theorem we prove that BNNs
in the thermodynamic limit will only retain relevant directions along the data manifold, which
correspond to genuine directions of high relevance.

Theorem. Let Mp C R? be an a.e. smooth data manifold and let f(z,w) be an infinitely wide
Bayesian neural network, trained on M p and at full convergence of the training algorithm. Let
p(w| D) be the posterior weight distribution and suppose that the prior distribution p(w) is uninfor-
mative. In the limit of infinite training data, for any x € Mp, E,p)[Vz f (2, w)] = 0.
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deterministic architectures. For multiple data sets, attacks,
training techniques (SGD training, adversarial training 8} |10],
Bayesian inference) and approximate inference methods Figure 1: LRP robustness differ-
(Hamiltonian Monte Carlo [[12], Variational Inference [14]), ences for FGSM attacks computed
LRP robustness scores are considerably higher than their deter- on 500 test points using Epsilon,
ministic counterparts. Adversarially trained networks have low Gamma and Alpha-Beta rules on
LRP robustness compared to BNNs: this suggests empirically the Top,, pixels, for adversarially
that the components of the gradient that are normal to the data trained networks (left) and BNNs
manifold (and are therefore the ones likely to be changed in an  (right). BNN are trained with HMC
attack) are often major contributors to the relevance in DNN. and tested using 100 posterior sam-
The experiments confirm that Bayesian explanations are more ples.

stable across multiple LRP rules, gradient-based adversarial attacks and saliency attacks, also in the
internal layers (Fig. [I).

LRP rule LRP rule

A simple explanation for the improved LRP robustness of BNNs lies
in the fact that BNNs are provably immune to gradient-based attacks
[S]. Therefore, one might argue that the stability of the LRP is a
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Bay p=0.39 3 trivial byproduct of the stability of the classifications. To explore

samp= = . . . . . .

Bay p=0.62 3 g this question more in depth, we consider the relationship between the
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LRP robustness of a test point (stability of the explanation) and its
softmax robustness (resilience of the classification against an attack).
Fig. [2] shows scatterplots of these two quantities for deterministic,
adversarially trained and Bayesian NNs. Deterministic explanations
are weak against adversarial perturbations even when their softmax
robustness is close to 1. Therefore, even in the cases where the clas-
sification is unchanged, deterministic saliency heatmaps are fragile.
Bayesian models, instead, show a strong positive correlation between
LRP and softmax robustness, especially as the number of posterior
samples increases. While it is immediately evident that Bayesian
predictions are robust to adversarial attacks, it is also clear from this
025 030 075 100 correlation that attacks which are more successful also alter more
substantially the interpretation of the classification, and are likely to

Figure 2: LRP vs softmax ro- represent genuine directions of change of the true underlying decision

bustness on MNIST dataset  function along the data manifold.
against FGSM attack. p de-

notes the correlation coeffi-
cient. LRP Robustness is
computed with the Epsilon
rule on the 20% most rele-
vant pixels.
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Conclusions Our geometric analysis suggests a fundamental link
between the fragility of DNNs against adversarial attacks and the
difficulties in understanding their predictions: gradients of the loss
function and the prediction function tend to be dominated by direc-
tions which are orthogonal to the data manifold. These directions
both give rise to adversarial attacks and provide spurious explanations
which are orthogonal to the natural parameterisation of the data manifold. We point out the presence
of theoretical and practical limitations. The strong assumptions in our Theorem, which restrict the
geometrical considerations to fully trained BNNSs in the limit of an infinite amount of weights and
training data, do not prevent us from observing the desired behavior in practice, even when using
cheap approximate inference techniques (VI). However, learning accurate BNNs on more complex
datasets is extremely challenging, which makes the Bayesian scheme currently not suitable for
large-scale applications. This suggests the need for further investigations on such matters, especially
on sufficiently accurate and scalable approximate inference methods for BNNs such applications
[L5]. Nevertheless, we believe that the insights provided by a geometric interpretation will be helpful
towards a better understanding of both the strengths and the weaknesses of deep learning.
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