
An Empirical Comparison of GANs and
Normalizing Flows for Density Estimation

Tianci Liu
Purdue University

liu3351@purdue.edu

Jeffrey Regier
University of Michigan
regier@umich.edu

Abstract

Generative adversarial networks (GANs) and normalizing flows are both ap-
proaches to density estimation that use deep neural networks to transform samples
from an uninformative prior distribution to an approximation of the data distribu-
tion. There is great interest in both for general-purpose statistical modeling, but
the two approaches have seldom been compared to each other for modeling non-
image data. The difficulty of computing likelihoods with GANs, which are implicit
models, makes conducting such a comparison challenging. We work around this
difficulty by considering several low-dimensional synthetic datasets. An extensive
grid search over GAN architectures, hyperparameters, and training procedures
suggests that no GAN is capable of modeling our simple low-dimensional data
well, a task we view as a prerequisite for an approach to be considered suitable
for general-purpose statistical modeling. Several normalizing flows, on the other
hand, excelled at these tasks, even substantially outperforming WGAN in terms of
Wasserstein distance—the metric that WGAN alone targets. Scientists and other
practitioners should be wary of relying on WGAN for applications that require
accurate density estimation.

1 Introduction

Generative adversarial networks (GANs) and normalizing flows can be seen as alternative approaches:
both are flexible generative models that, in contrast to both variational autoencoders and traditional
“shallow” Bayesian models, do not assume that either the likelihood or the prior has a simple
parametric form. This flexibility makes both approaches appealing for modeling complex scientific
data. GANs in particular have caught the attention of scientists (Mustafa et al., 2019; Choi et al.,
2017; Baowaly et al., 2018).

To date, however, GANs have been validated primarily using image data. Little research exists
investigating whether GANs are suitable for general statistical modeling, as would be required for
scientific applications. Performance metrics used to assess GANs thus far have unfortunately only
revealed half the story: they measure whether the data GANs generate are realistic (i.e., precision)
but not whether the fitted GAN model has support for held-out samples (i.e., recall). The difficulty
associated with measuring recall stems from the intractability of the likelihood GANs assign to
high-dimensional data—a well known limitation of implicit models Lucic et al. (2018).

Synthetic low-dimensional data, on the other hand, offers us the potential to establish a negative
result. Using these data, we can accurately assess the performance of both GANs and flows. We study
the performance of both GANs and flows on synthetic univariate data from mixture data (Section 2).
Although accurately learning distributions of univariate data is not sufficient for scientific modeling,
it is a necessary condition for a tool to be reliable.

Bayesian Deep Learning workshop, NeurIPS 2021.

Even with univariate data, measuring performance is not trivial. We confront subtle issues of selecting
kernel density estimation bandwidth, and present a low-variance estimator for Wasserstein distance
between low dimension distributions (Section 3). The visualization methods we develop allow us to
demonstrate several distinct failure modes of GANs.

An additional challenge of establishing negative results with respect to GANs in general is their
diversity: there are hundreds of different GAN algorithms, each of which can be combined with
numerous tricks and tweaks, implying an exponential number of combinations. Using eight NVIDIA
GeForce RTX 2080 Ti GPUs, and weeks of runtime, we systematically search these combinations.
For WGAN, we experiment with gradient penalties, spectral normalization, batch normalization,
cyclic learning rates, ResNet architectures, various layer widths, different noise distributions, and
additional tuning parameters (Section 4). We also experiment extensively with normalizing flows.

GANs failed to learn even basic structures in our synthetic data, whereas some normalizing flows
modeled the data well (Section 5). Surprisingly, normalizing flows outperform WGANs even in terms
of the metric that only WGAN targets: minimizing Wasserstein-1 distance.

The implications of these experiments, conducted solely with low-dimensional data, may not gen-
eralize to higher dimensions; hence, good performance on these experiments should be viewed
necessary—but not sufficient—for a method to be suitable for general-purpose density estimation.
Scientists and other practitioners should be wary of relying on WGAN for applications that require
accurate density estimation (Section 6).

2 Synthetic data

We developed two synthetic datasets for evaluating GANs and normalizing flows. Both datasets are
univariate. To avoid confounding our results with issues of data efficiency and overfitting, which are
beyond the scope of this work, we make the size of both datasets effectively infinite by drawing fresh
data at every step.

2.1 Unimodal dataset

One data model we consider is a two-component univariate mixture with equal means, specified by
the following generative process:

y ∼ Bernoulli(p) (1)
x | y = 0 ∼ Uniform(µ− rσ, µ+ rσ) (2)

x | y = 1 ∼ Gaussian(µ, σ2). (3)

Here y is an unobserved random variable and x is the data. We set p = 0.75, µ = 5, σ = 0.1, r = 5.
Figure 1 (a) shows this density. The density has several qualitative aspects we expect a good model
to recover: sharply changing density at 4.5 and 5.5, and a bell-shaped mode symmetry around 5.

2.2 Multimodal dataset

We also consider a mixture of unimodal distributions with unequal means, as specified by the
following generative process:

z ∼ Categorical(1/K, . . . , 1/K) (4)
y | z = k ∼ Bernoulli(p) (5)
x | y = 0 ∼ Uniform(µk − rσ, µk + rσ) (6)

x | y = 1 ∼ Gaussian(µk, σ
2). (7)

Here x is the data and y and z are unobserved random variables, used only to facilitate data generation.
We set K = 8, p = 0.5, σ = 2, and r = 1.5. For k = 1, . . . ,K, we set µk = 10k. Figure 1 (e)
shows this density. We designed this density to have multiple modes, with non-negligible density
between them. Compared to our unimodal mixture, our multimodal mixture has narrower modes with
sharper boundaries. The density has several qualitative aspects that we would expect a good model to
recover: the correct number of modes, the correct high and low density areas, equal densities at the
modes, and equal densities within the low-probability regions between modes.

2

3 Metrics

Evaluating the quality of GANs is not trivial because the density of GAN generators cannot be
evaluated directly—generators can only be sampled. Our strategy is to first draw a large number of
samples from the generator. Because our data is low-dimensional, we can attain high sample density.
Then, we compute two metrics—one qualitative and the other quantitative–using these samples.

3.1 Kernel density estimation

Kernel density estimation (KDE) lets us visualize the GAN density and compare it qualitatively to
the normalizing flow density and the true data generating density. However, KDE can be inaccurate if
the bandwidths are chosen improperly: too large and the GAN appears smoother than it is, too small
and the GAN density incorrectly appears to be highly variable. Either case can mask the extent to
which a GAN captures structure in the true data distribution.

We strike a good balance by using a large sample size (100, 000), and by choosing a bandwidth such
that each band contains, on average, 500 samples, where 500 is chosen to approximately maximize
the likelihood of held-out data.

3.2 Wasserstein-1 distance

Wasserstein-1 distance, also known as Earth-Mover distance, measures the difference between two
distributions. Wasserstein-1 distance is an especially interesting distance for our research questions
because it is the objective function that WGAN targets. While computing Wasserstein-1 distance in
general requires solving a constraint optimization, for univariate data it can be readily estimated to
high precision (Ramdas et al., 2015; Panaretos & Zemel, 2019). Suppose X (resp. Y) is a random
variable following PX (resp. PY). Let x (resp. y) denote i.i.d. samples with size n (resp. m) of X
(resp. Y) and let F̂X (resp. F̂Y) be the empirical cumulative distribution function based on x (resp.
y). Then, Wasserstein-1 distance can be estimated with

W1(PX ,PY) ≈
∑

t∈x∪y

|F̂X(t)− F̂Y (t)|. (8)

This formula provides a convenient method of validating the predictions of a GAN critic c (Arjovsky
et al., 2017; Gulrajani et al., 2017), which estimates the Wasserstein-1 distance as

W1(PX ,PY) ≈
1

n

n∑
i=1

c(xi)−
1

m

m∑
j=1

c(yj). (9)

4 Methods

We initially set out to demonstrate a positive result: that GANs are versatile statistical tools. As
evidence to the contrary accumulated, we embarked on the more challenging task of showing
a negative result of some generality by searching large numbers of permutations of GAN types,
architectures, and training techniques. For normalizing flows, a positive result emerged fairly soon,
so it was not necessary to try many combinations of flow training techniques and flow architectures.

4.1 Methods for training GANs

We considered the original GAN (Goodfellow et al., 2014) at first, but focused on the Wasserstein
GAN (WGAN) after it became apparent the former would not adequately model our data. Prior work
establishes that WGAN is among the best performing GANs if architectures are well-chosen (Rosca
et al., 2018; Lucic et al., 2018; Dinh et al., 2017).

The WGAN hyperparameters can be divided into two sets based on whether they determine network
architecture or training strategy. The former includes activation functions, width, and depth, as well
as different ways to initialize weights—namely, uniform and Xavier (Glorot & Bengio, 2010). We
also considered both fully connected and ResNet architectures (He et al., 2016). For the generator,

3

Figure 1: Density plots for our datasets and the models fitted to them. The top row pertains to the
univariate dataset and the bottom row to the multivariate dataset. The leftmost column shows the
data distributions. The other columns show the distributions learned by three density estimation
algorithms: WGAN, FFJORD, and Gaussianization Flows.

we considered both Gaussian and uniform priors of various dimensions, as well as batch normaliza-
tion (Ioffe & Szegedy, 2015). For the critic, we explored gradient penalties (Gulrajani et al., 2017)
and spectral normalization (Miyato et al., 2018), and consider different strengths for both regularizers.

The WGAN hyperparameters dictating the training strategy include optimizer learning rate, weight
decay, and both coefficients for Adam (Kingma & Ba, 2014). We also considered cyclic learning
rates (Smith, 2017) following some failure modes we observed. We also experimented with various
numbers of critic updates per generator update.

Exhaustive grid searching on such a large search space is prohibitively expensive. We approximate
an exhaustive grid search with random search (Bergstra & Bengio, 2012) through ASHA (Li et al.,
2018), which leverages early stopping scheduler of parallel hyperparameter tuning, to study the
performances of different combinations.

4.2 Methods for training flows

We first considered Masked Autoregressive Flow (Papamakarios et al., 2017), Inverse Autoregressive
Flow (Kingma et al., 2016), RealNVP Dinh et al. (2017) and Planar flows Rezende & Mohamed
(2015). For univariate data such as ours, however, these flows have just two learnable scalar
parameters. With so few learnable parameters, the capacity of such flows is limited for univariate
data, so we did not consider them further.

Our experiments with flows focused instead on Free-form Jacobian of Reversible Dynamics
(FFJORD) (Grathwohl et al., 2019) and Gaussianization Flows (GF) (Meng et al., 2020). The
former, FFJORD, is a continuous flow based on an ordinary differential equation. The latter, GF,
stacks two types of learnable transformations: a linear transformation to rotate data such that cor-
relations between different dimensions is minimized, and a non-linear transformation to learn each
marginal distributions separately by composing inverse Gaussian CDF with a mixture of logistic
distributions. The first type of transformation was unnecessary for our univariate data. We did not
run a grid search to find optimal parameters for either FFJORD or GF. Instead, we used the same
architectures and training strategies from Grathwohl et al. (2019) and Meng et al. (2020).

5 Results

We evaluated WGAN, FFJORD and Gaussianization Flows on both our synthetic datasets. The
results reported for WGAN are always for models tuned with extensive hyperparameter optimization.
Typically spectral normalization led to the best results for WGAN. We consider the experimental
results both qualitatively and quantitatively.

4

5.1 Qualitative

Figure 1 is a key result of ours that shows the dataset densities (ground truth) and the learned densities.
Only the best performing WGAN is shown. Even the best WGAN failed to reconstruct key qualitative
features of the datasets. On the unimodal dataset, WGAN assigned too much mass in both regions
around the boundaries of data distribution’s support, as well as at the mode of the data distribution.
Further, WGAN failed to capture the symmetry and bell-shaped structure. On the multimodal dataset,
WGAN recovered all modes and gaps between modes. However, WGAN misrepresented the local
structure of the individual modes (e.g., the symmetry), as well as the relative densities of the modes,
which should have been equal.

Both types of normalizing flows, in contrast, recovered both the local and global structure of the data
distributions. GF appears to be slightly more accurate than FFJORD.

5.2 Quantitative

Table 1 summarizes the quantitative performances on two datasets in terms of the Wasserstein-1
distance, as estimated by Equation 8. Surprisingly, both flows outperformed the best WGAN in terms
of Wasserstein-1 distance—a metric that only WGAN targets.

The best performing WGAN for unimodal data used spectral normalization to constrain the Lipschitz
constant of the critic, whereas for multimodal data, a gradient penalty worked better than spectral
normalization. Many of the modifications of the WGAN that we thought might help did not. We
report results for several of these modifications in Table 2.

We made some progress in understanding why WGAN does not perform better. Because our data is
low dimensional, Equation 8, gives us low variance (and unbiased) estimates of the Wasserstein-1
distance. The WGAN critic computes Wasserstein distance differently, using Equation 9. When
WGAN converged, the Wasserstein-1 distance estimated by the critic often severely underestimated
the true Wasserstein-1 distance. Surprisingly, in some cases, the critic estimate of the Wasserstein-1
distance was negative. Without reliable estimates from the critic of the distance between the data
distribution and the model/generator density at the current iterate, there is no sound basis for updates
to the generator.

Table 1: Wasserstein-1 distance between fitted models and the targeted data distributions (i.e., our
unimodal dataset and our multimodal dataset), as estimated by Equation 8. Lower is better.

UNIMODAL DATA MULTIMODAL DATA

WASSERSTEIN GAN 0.0087 0.4814
FFJORD 0.0066 0.289
GAUSSIANIZATION FLOWS 0.0035 0.138

Table 2: Wasserstein-1 distance between fitted WGANs and the targeted data distributions, as
estimated by Equation 8. Lower is better. “Baseline” is our best model: WGAN with either spectral
normalization or gradient penalty, optimally tuned. “With uniform prior” substitutes a uniform prior
for a Gaussian prior. “With cyclic LR” introduces a cyclic learning rate. “With dropout” adds dropout
regularization. “With ResNet” uses residual blocks in the generator and the critic.

UNIMODAL DATA MULTIMODAL DATA

baseline 0.0087 0.4814
with uniform prior 0.0490 0.6648
with cyclic LR 0.0491 0.7664
with dropout 0.1171 1.0461
with ResNet 0.1827 0.7238

5

5.3 Runtime

Gaussianization Flows was by far the fastest model to train, requiring just 1.5 hours. FFJORD
required nearly two weeks to converge on our multimodal dataset. However, this extreme runtime
may have in part been due to an issue with the reference implementation, which caused the ODE
solver to run more slowly with each iteration. WGAN with spectral normalization and 100 critic
updates per generator update required around two days per run. Hundreds of runs were necessary to
find good hyperparameters.

6 Discussion

We developed synthetic datasets, reporting metrics, and a model-search methodology for evaluating
both GANs and normalizing flows. Our results are surprising: GANs failed to learn key qualitative
aspects of both unimodal and multimodal data. Quantitatively, normalizing flows outperformed the
Wasserstein GAN in terms of the very metric that only latter targets: Wasserstein-1 distance. These
negative results echo some concerns raised in Rosca et al. (2018).

There are caveats to our results. First, the lessons from low-dimensional data may not generalize
to higher dimensional settings. However, for applications that require good recall, including many
scientific applications, these results from low-dimensional data are enough to raise serious doubts
about the performance of GANs in high dimensions, where there is no rigorous way to detect that an
implicit model has poor recall. Good performance on our benchmarks is a necessary but not sufficient
condition for a method to be a reliable at general-purpose density estimation.

Another caveat to our work is that establishing a general negative result requires exhaustively
searching an infinite number of GANs, including GAN variants that have not yet been invented.
We tested many but not all GAN variants. We invite others to test additional GAN variants using
our benchmarking software, which is publicly available at https://github.com/lliutianc/
gan-flow. As it stands, however, scientists and other practitioners should be wary of relying on
GANs to accurately estimate densities.

References
Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein generative adversarial networks. In Interna-

tional Conference on Machine Learning, 2017.

Baowaly, M. K., Lin, C.-C., Liu, C.-L., and Chen, K.-T. Synthesizing electronic health records
using improved generative adversarial networks. Journal of the American Medical Informatics
Association, 26(3):228–241, 12 2018.

Bergstra, J. and Bengio, Y. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13(10):281–305, 2012.

Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W. F., and Sun, J. Generating multi-label discrete
patient records using generative adversarial networks. In Machine Learning for Healthcare
Conference, 2017.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estimation using Real NVP. In International
Conference on Learning Representations, 2017.

Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In Teh, Y. W. and Titterington, M. (eds.), International Conference on Artificial Intelligence and
Statistics, pp. 249–256, 2010.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. Generative adversarial nets. In Neural Information Processing Systems, 2014.

Grathwohl, W., Chen, R. T. Q., Bettencourt, J., and Duvenaud, D. Scalable reversible generative mod-
els with free-form continuous dynamics. In International Conference on Learning Representations,
2019.

6

https://github.com/lliutianc/gan-flow
https://github.com/lliutianc/gan-flow

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. Improved training of
Wasserstein GANs. In Neural Information Processing Systems, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, 2015.

Kingma, D. and Ba, J. Adam: A method for stochastic optimization. International Conference on
Learning Representations, 2014.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M. Improved
variational inference with inverse autoregressive flow. In Neural Information Processing Systems,
2016.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Hardt, M., Recht, B., and Talwalkar, A. Massively
parallel hyperparameter tuning. arXiv:1810.05934, 2018.

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bousquet, O. Are GANs created equal? A
large-scale study. In Neural Information Processing Systems, 2018.

Meng, C., Song, Y., Song, J., and Ermon, S. Gaussianization flows. ArXiv, abs/2003.01941, 2020.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral normalization for generative
adversarial networks. In International Conference on Learning Representations, 2018.

Mustafa, M., Bard, D., Bhimji, W., Lukić, Z., Al-Rfou, R., and Kratochvil, J. M. CosmoGAN:
creating high-fidelity weak lensing convergence maps using generative adversarial networks.
Computational Astrophysics and Cosmology, 6(1):1–13, 2019.

Panaretos, V. M. and Zemel, Y. Statistical aspects of Wasserstein distances. Annual Review of
Statistics and Its Application, 6(1):405–431, 2019.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked autoregressive flow for density estimation,
2017.

Ramdas, A., Garcia, N., and Cuturi, M. On Wasserstein two sample testing and related families of
nonparametric tests, 2015.

Rezende, D. and Mohamed, S. Variational inference with normalizing flows. In International
Conference on Machine Learning, 2015.

Rosca, M., Lakshminarayanan, B., and Mohamed, S. Distribution matching in variational inference.
arXiv preprint arXiv:1802.06847, 2018.

Smith, L. N. Cyclical learning rates for training neural networks. In 2017 IEEE Winter Conference
on Applications of Computer Vision, 2017.

7

	Introduction
	Synthetic data
	Unimodal dataset
	Multimodal dataset

	Metrics
	Kernel density estimation
	Wasserstein-1 distance

	Methods
	Methods for training GANs
	Methods for training flows

	Results
	Qualitative
	Quantitative
	Runtime

	Discussion

